Lecture 6: Introduction to
estimation; From the G-computation
formula to a simple substitution
estimator



A roadmap for causal inference

1. Specify Causal Model representing real
background knowledge

2. Specify Causal Question
3. Specify Observed Data and link to causal model
4. Identify : Knowledge + data sufficient?

5. Commit to an estimand as close to question as
possible, and a statistical model representing
real knowledge.

6. Estimate
7. Interpret Results



Outline

1. Definitions:
— Parameters
— Estimators
— Substitution estimators

2. From the point treatment G-computation
formula to a simple substitution estimator
— Example and intuition
— Comparison to standard MV regression

3. Motivation for new non-parametric approaches
— The importance of respecting your statistical model
— Evaluating estimator performance



Parameters

* Parameter W: A mapping from the
statistical model to the parameter
space
—W: M---> Real Numbers

e A function that

—Takes as input any distribution in the
statistical model M

— Gives as output a value in the parameter
space (eg the real numbers)



Parameter of the observed data
distribution

* W(P,)=, is the true parameter value

— It is a function of the (unknown) true observed
data distribution P,

— It is an element of the parameter space

e Also referred to as the estimand



Parameter of the observed data
distribution, or estimand

» Example: W(P,)=E,,(E,(Y|A=1,W)-E,(Y|A=0,W))

* If we knew P,(w,a,y) for all (w,a,y), we could
plug this into W and get a real number

* This number would be equivalent to the ATE
under specific causal assumptions
— Eg W satisfies the back door criteria



Empirical Distribution: P,

e We sample n i.i.d. copies of the random
variable O

* The empirical distribution P_ corresponds to
putting a weight of 1/n on each copy O, i=1,...n



Estimators

« Estimator: W: A mapping from the set of
possible empirical distributions P to the
parameter space

— WM, ---> Real Numbers

e A function that
— Takes as input our observed data

* Arealization of P,

— Gives as output a value in the parameter space

e Ex. the real numbers



Estimators

. \i/(Pn) = 1),, isthe estimate
— It is a function of the empirical distribution of the
data

— It is an element of the parameter space

* If we plug in a realization of P_ (based on a
sample of size n of the random variable O), we

get back an estimate U of the true parameter
value Y,



Our Classic Example

o WR(PL)=Eyy(Y;-Yy) = WI(P)
=E o[Eq (Y| A=1,W)-E, (Y| A=0,W)]
* If we knew P,, we could plug it

W into the function W and get the
true parameter value
A Y — In fact, we just need E,(Y|A,W) and
Po(w)
* Observe ni.i.d. copies — Butwe don’t know P,

of O=(W,A,Y)~P, * How might we define an
estimator of W(P,) ?



Substitution Estimators

e Also referred to as “plug in” estimators

* As in this example, often the target parameter
is only a function of part of P,

* Let Q, be defined as the part of P, that the
target parameter W is a function of
— i.e. W(P,)=W(Q,)



Definition: Substitution Estimator

e A substitution estimator is an estimator based
on

1. Defining an estimator Q,, of Q,
— Where Q, respects the statistical model

2. Plugging the resulting estimate into the
parameter mapping W in order to generate
an estimate of the true parameter value

. \ij(Pn) — \Ij(Qn)



Ex. Simple substitution estimator based
on the G-computation formula

* O=(W,AY)~P,
* W(P,)=E\(E,(Y]|A=1,W)-E,(Y|A=0,W)
* We use Q,to refer to the parts of the

observed data distribution that our target
parameter is a function of

—ie. W(P,)=W(Q,)

Ex: W(Po)=E,y(E(Y|A=1,W)-Eq(Y | A=0,W)

— W(P,) only a function of Qo(A, W) = Eo(Y|A, W) and
— Qo = (Qo, Qo,w) Qo.w (distribution of W)



Simple substitution estimator based
on the G-computation formula

e We define

1. An algorithm that takes the observed data as
input and gives us an estimate of E; (Y|A,W)

2. An algorithm that takes the observed data as
input and gives us an estimate of P, (W=w)

* We can now substitute these estimates in place
of the unknown observed data parameters

U(Py) =) (Eo(YIA=1W =w) - Ey(Y|A=0,W =w)) Py(W = w)

w

b(P)=3" (E(Y\A — 1, W =w)— E(Y|A=0,W = w)) POW = w)

w



How might we estimate P,(W=w)?

* Our estimator should respect our statistical
model

— Here, our statistical model is non-parametric

* Asimple non-parametric estimator of
Po(W=w): sample proportion 1 ZI

— W. is observed covariate value for subject |

* This doesn’t assume anything about the
distribution of W



A simple substitution estimator

 Target parameter value of observed data
distribution:

* To take the expectation over W, we take the
empirical mean over W,, i=1,...,n
— Same as estimating P(W=w) as the sample proportion

* An estimator of E; (Y|A,W) thus gives us a
substitution estimator:

V(Po) = W(@Qn) = (@1, W) — Gu(0, W)

i=1
where Q,,(A, W) is an estimator of Eo(Y|A, W).



General implementation of
substitution estimator based on G-
computation formula

1. Estimate Qo(A, W) = Ey(Y|A, W)

2. Use this estimate to generate a predicted
outcome for each subject setting A=1 and
setting A=0

— Intuition: Mimics study where each individual
received and did not receive the treatment

3. Estimate W(P,) as the difference in the mean
of these predicted outcomes



How might we estimate E,(Y|A,W)?

* Asimple non-parametric estimator of E,(Y|A,W):
Take empirical mean of Y within strata defined by
each possible value for (A,W)

— Also referred to as non-parametric maximum likelihood
estimator (NPMLE)

— Same as fitting a saturated regression model

Empirical Mean of Y within strata defined by (A,W)

W=1 W=0
A=1 35 (n=110) 5 (n=230)
A=0 10 (n=123) 27 (n=78)




HIV Example: Effect of switch to
second line therapy on

* Intervention: a weekly
pill organizer

N2 Py é

* Designed to help
patients remember to
take their prescribed
medications

- " e e o .

Research Question:
Does use of a pill box improve adherence to
antiretroviral drugs?



Example: Effect of Pill Box Use on
Adherence to Antiretrovirals

* A= Pill Box “Mediset” Use
* Y=adherence to antiretroviral drugs

— % of prescribed doses taken

W= age, sex, recreational drug use, past
adherence, type of regimen, CD4 count....

Research Question:
Does use of Pill Box improve adherence to
antiretroviral drugs?



Simple Example: G-computation

Original Data

Pill Box

Crack Use Adherence
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Expanded Data with
Predicted Outcomes

Pill Box Predicted

Adherence (Y,)

0.4
0.75
0.4
0.75
0.4
0.75
0.55
1.0
0.55
1.0
0.55
1.0



Simple Example: G-computation

Expanded Data with
Predicted Outcomes

Pill Box Predicted

D (a) Adherence (¥,) Estimate of E,(E(Y|A=0,W)=0.575

1 0 0.4 (equal to E(Y,) if W satisfies

2 0 0.75 the bngck door criterion)

3 0 0.4 1 -

4 ’ o - Z E(Y|A=0,W;)=0.575
5 0 0.4 =1

6 0 0.75 Estimate of E,,(E(Y|A=1,W)

1 1 0.55 (equal to E(Y,) if W satisfies

2 1 1.0 the back door criterion)

3 1 0.55 1 n ~

; | w [ =) E(Y|A=1,W;)=0.775
5 1 0.55 n i—=1

6 1 1.0



Simple Example: G-computation

* Estimate of Ej[Y|A=1]-E,[Y|A=0]
(confounded association between pill box
use and adherence):

— 0.7-0.63=0.07

»  Estimate of Ey[E,(Y|A=1,W)-E,(Y|A=0,W)]
— 0.775-0.575=0.20

— An estimate of E[Y,-Y,] (effect of pill box use on
adherence) if W satisfies the backdoor criteria



Note on Intuition

* Not really estimating what each subject’s
counterfactual outcome would have been...

— In that case, we would not simulate the outcomes
corresponding to the treatments we observed

— This is just a hueristic to give some intuition

* Really, we are just implementing a
substitution estimator

— Plugging estimate of Q, into the parameter
mapping W

B(P) = W(Qn) = = 3 [Qu(1, Wi) — Qn(0, W;)]

n -
1=1




How to estimate E,(Y|A,W)?

 NPMLE breaks down quickly if A and/or W are
continuous or have multiple levels

— As occurs when W has multiple components
— End up with sparse or empty cells
Empirical Mean of Y within strata defined by (A,W)

W=0 w=1 W=100
A=1 310 (n=1) |66 (n=12) 40 (n=30)
A=0 10 (n=60) |5 (n=4) ?? (n=0)

* We need alternative approaches to non-
parametric estimation in this (very common)
setting

e Coming up next lecture.....



How else might we estimate
E,(Y[AW)?

* Say we knew that this conditional expectation
could be described by a lower dimensional
parametric model

 We have real knowledge about the functional
form of the relationship between the
expectation of Y and (A, W)

— i.e. Our statistical model is not Non parametric



How else might we estimate
E,(Y|AW)?
* Ex. We know that
E(Y|A,W)=B,+B,A+B,W+B,A*W for some 3

 We can estimate B and thereby E(Y|A,W) by
fitting a simple linear regression



G-computation vs. MV Regression

* IfE,(Y|A,W) is estimated using a linear model
without interactions between A and W,

— Estimated coefficient on treatment is equivalent to the G-
computation estimate of the ATE

 Ex: Estimate of E[Y|A,W] :
Qn(A,W)=EY|A,W) =80+ B1A+ W
e Estimate of ATE:

B(Qu) = - S (BY|A=1,1) = B(Y|4 = 0,W,)

= A=A



G-computation vs. MV Regression

* If E4(Y|A,W) is estimated using a linear model with
interactions between A and W

 Then the coefficients in the regression model
provide a conditional effect estimate

— Average treatment effect for a a given value of W

— Average with respect to distribution of W to estimate
the ATE

Qn(A, W) = A(Y’A W) = Bo+ B1A+ oW + BsW A

U(Qn) = ZE (YIA=1,W;) - BE(Y|A=0,W;)
1=1
2%251%—53”/@'

= Bl - B:sE(W)



G-computation vs. MV Regression

* If E,(Y|A,W)is estimated using a nonlinear model
— EX. Logistic regression

Qn(Av W) — E(Y’A, W) —

1
]_ _|_ eajp_ (BO ‘|‘Bl A+/B2 W)

* Then the coefficient on A in the regression model
provides a conditional effect estimate
— Ex: Conditional casual odds ratio

(B) EY|A=1,W)/(1—-EY|A=1W))

Y T B YA = oW /(1 — B(Y]A =0, W)
_ E:(Y1|W)/(1 — J?(YllW))
E(Yo|W)/(1 = E(Yo|W))



G-computation vs. MV Regression

* Regardless of how E (Y|A,W) is estimated, can
use the G-comp formula to get an estimate of
the ATE

— Or other target causal quantity that is a function of
E(Y,)

* Example: From Logistic regression to ATE

= ~ 1
Qn(A, W) =EY|AW) = -
1 —|— egjp (Bo+pB1A+B2W)

U(Q,) = = ZEY\A_1W ZEY\A_OW)

1,1 7,1

> 2
n Pt 1+ emp_(BO‘FBl‘I'BzWi) n 1 1+ egjp_(BO—i—BQWz’)




General Implementation of G-
Computation for point treatment

1. Estimate Qo(A, W) = Ey(Y|A, W)

2. Use this estimate to generate a predicted
outcome for each subject setting A=1 and
setting A=0

— Intuition: Mimics study where each individual
received and did not receive the treatment

3. Estimate W(P,) as the difference in the mean
of these predicted outcomes



Take home points

e Under specific conditions, the coefficient on
exposure in a regression model equals the
average treatment effect

* However, in many cases it does not

* |t may still have a casual interpretation- eg it
may be estimating a different casual
parameter



Take home points

* Parametric multivariable regression is just one
way to estimate E(Y|A,W)

* The resulting estimator can be plugged into
the G-comp formula to get an estimate of the
average treatment effect

 Whether or not this is a good idea depends on
whether the regression is misspecified



Why do we need new tools?

* Even for a simple estimand like the Gcomp
formula

1. NP MLE often breaks down in practical data
settings: Sparse/empty cells

2. We often do not know that E(Y|A,W) can be
described by a lower dimensional parametric
model
— Our true statistical model is non parametric

* We might still decide to estimate the conditional

expectation by fitting the parameters of such a
parametric model...




Why do we need new tools?

* Ex. We we do not know that
E(Y|A,W)=B,+B,A+B,W+B,A*W for some 3
* However, we can still decide to estimate B and
thereby E(Y|A,W) by fitting a simple linear
regression

* However, if our model is wrong it may result
in a bad estimate, and thus a poorly
performing (biased) estimator



Motivation for Data adaptive
approaches

e Often a statistical model that accurately
represents our knowledge is non-parametric

— Distribution of the observed data can take any
form...

* |f our statistical model does not represent our
knowledge, it may not contain the truth

— This can lead to biased estimators

* |f we use an estimator that does not respect
our true statistical model, it can lead to bias



Example: Why should we respect our

model?
* Simple Example: X=Survival Time

* Estimand: P, (X < 2 years)
* Say we know X is exponentially distributed

— Model: the set of exponential distributions
1.0 : S




Example (1)

* Model: The set of exponential distributions

* To estimate P,(X < 2 years), we can just
estimate A

— Gives us an estimate of the whole distribution of X
(and thus an estimate of our target parameter)

1.0

1 — e_)‘w, x > 0,
F(m’k)_{ 0, r<0. OF
50.6
MLE estimate: z
5 L .




Example (2)

 We know nothing about the distribution of X

* Model: Non-parametric

— Puts no restrictions on the allowed distributions
for X

— This doesn’t mean we assume that X is not
exponentially distributed, it just means we
consider more possibilities



Example (2): Option 1

* We don’t know anything about the
distribution of X

 We could assume it is exponential (ie assume
an exponential model)

— This model does not respect the limits of our
knowledge!!

* This route suggests one possible estimator:

N 1 > — A2
— MLE: ) = P(X <2)=1-—exp
I/n) ( |




Example (2): Option 2

We don’t know anything about the distribution of X
We thus assume a non-parametric model

This suggests a different estimator
— A natural non-parametric estimator: the sample

proportion

P(X <2) = D i1 I;Xi < 2)

— Doesn’t assume anything about the distribution of X

Lets compare these two estimators....



Estimator performance

e Because an estimator is a function of random
variables, it is itself a random variable

— It has a distribution

 We can talk about its performance across
many samples of size n (realizations P,) drawn
from the same underlying distribution P,

A few common measures of performance
— Bias
— Variance
— Mean Squared Error



Some benchmarks for estimators

* Bias: How does the expectation of the estimator
differ from the true parameter value?

Bias (@(Pn)) -y (@(Pn) _ \IJ(PO)>
* Variance: How much does the estimator vary
across samples?

Variance (\ij(Pn)) = Lo [(\P(P”) B Eo(qj(Pn)))Zl

 Mean Squared Error: On average, how far is the
estimator from the truth?

MSE (@(Pn)) — E, {(\P(Pn) _ \IJ(PO)>2}




Simple simulations

Observed data: 200 i.i.d. copies of X drawn from
an unknown distribution

Target Parameter: P (X < 2 years),

Simulation 1
— X~Exponential (rate A=0.36)

1—e ™ >0,
F(x;)\):{ 0 x < 0.

Simulation 2
— X~ Weibull (shape k=5; scale A=3)

L—e @ >0,
F(gj;k’k):{ "o z < 0.



Results: Simulation 1 (X”Exponential)

* Bias/variance estimated based on 2000
samples each of size 200

Truth Mean Variance
estimate

Parametric 0.52
(exponential model)

Non-parametric 0.52 0.52 5e-4 le-3
(sample proportion)



Results: Simulation 1 (X”Exponential)

Truth = 2
Avg Estimate based on
exponential model =

Avg Non-parametric estima

©
o

P(X<=x)
Il
11
11

0.4

True Distribution of X
Estimated Distribution of X
assuming an exponential model

0.2

0.0
I




Results: Simulation 2 (X™Weibull)

Bias/variance estimated based on 2000
samples each of size 200

Truth Mean Variance
estimate

Parametric 0.51
(exponential model)

Non-parametric 0.12 0.12 3e-4 5e-4
(sample proportion)



Results: Simulation 1 (X®Weibull)

i Average Estimate based on
exponential model (0.51)
% Cmtmim
o
<

Truth (0.12)=
Average Non-parametric €

True O

t

D

Estimated Dis
assuming an ¢

istribution of X

ribution of X
xponential model

stimate (0.12)

|
4

5

3



This is a simple example

* There was an easy alternative here: the

sample proportion provides a natural non-
parametric estimator

* Real life is harder
— More variables; More complex target parameters
* Coming up next...Estimation using high

dimensional data in non-parametric statistical
models



A Roadmap....

1. Causal Statistical
Model Model

y 6. Estimator

4. Identified? — 5. Estimand

N

Convenience
2. Question assumptions

3. Data



Key Points

Parameter: a function with input a distribution in the
statistical model and output a value in the parameter

space

Estimator: a function with input the observed data and
output a value in the parameter space

Simple substitution estimator for MSM parameter

— Generate predicted values for each subject under each
exposure of interest and regress on the MSM

An estimator that does not respect statistical model
can lead to poor estimates

— Some measures of estimator performance: Bias, Variance,
MSE



