Lecture 6: Introduction to estimation; From the G-computation formula to a simple substitution estimator

A roadmap for causal inference

- 1. Specify **Causal Model** representing <u>real</u> background knowledge
- 2. Specify Causal Question
- 3. Specify Observed Data and link to causal model
- 4. Identify: Knowledge + data sufficient?
- 5. Commit to an **estimand** as close to question as possible, and a **statistical model** representing real knowledge.
- 6. Estimate
- 7. Interpret Results

Outline

- 1. Definitions:
 - Parameters
 - Estimators
 - Substitution estimators
- 2. From the point treatment G-computation formula to a simple substitution estimator
 - Example and intuition
 - Comparison to standard MV regression
- 3. Motivation for new non-parametric approaches
 - The importance of respecting your statistical model
 - Evaluating estimator performance

Parameters

- Parameter Ψ: A mapping from the statistical model to the parameter space
 - $-\Psi: \mathcal{M}---> \text{Real Numbers}$
- A function that
 - —Takes as input any distribution in the statistical model ${\mathcal M}$
 - Gives as output a value in the parameter space (eg the real numbers)

Parameter of the observed data distribution

- $\Psi(P_0)=\psi_0$ is the true parameter value
 - It is a function of the (unknown) true observed data distribution P₀
 - It is an element of the parameter space
- Also referred to as the estimand

Parameter of the observed data distribution, or estimand

• Example: $\Psi(P_0) = E_W(E_0(Y|A=1,W)-E_0(Y|A=0,W))$

- If we knew P_0 (w,a,y) for all (w,a,y), we could plug this into Ψ and get a real number
- This number would be equivalent to the ATE under specific causal assumptions
 - Eg W satisfies the back door criteria

Empirical Distribution: P_n

- We sample n i.i.d. copies of the random variable O
- The empirical distribution P_n corresponds to putting a weight of 1/n on each copy $O_{i,}$ i=1,...n

Estimators

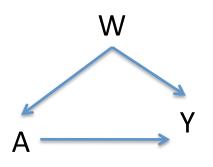
- Estimator: $\widehat{\Psi}$: A mapping from the set of possible empirical distributions P_n to the parameter space
 - $-\hat{\Psi}:\mathcal{M}_{\mathcal{NP}}$ ---> Real Numbers
- A function that
 - Takes as input our observed data
 - A realization of P_n
 - Gives as output a value in the parameter space
 - Ex. the real numbers

Estimators

- $\hat{\Psi}(P_n) = \psi_n$ is the estimate
 - It is a function of the empirical distribution of the data
 - It is an element of the parameter space
- If we plug in a realization of P_n (based on a sample of size n of the random variable O), we get back an estimate ψ_n of the true parameter value ψ_0

Our Classic Example

•
$$\Psi^{F}(P_{UX})=E_{U,X}(Y_1-Y_0)$$



 Observe n i.i.d. copies of O=(W,A,Y)~P₀

- $\Psi(P_0)$ = $E_{W,0}[E_0(Y|A=1,W)-E_0(Y|A=0,W)]$
- If we knew P_0 , we could plug it into the function Ψ and get the true parameter value
 - In fact, we just need $E_0(Y|A,W)$ and $P_0(w)$
 - But we don't know P₀
- How might we define an estimator of $\Psi(P_0)$?

Substitution Estimators

- Also referred to as "plug in" estimators
- As in this example, often the target parameter is only a function of <u>part</u> of P₀
- Let Q_0 be defined as the part of P_0 that the target parameter Ψ is a function of
 - i.e. $\Psi(P_0) = \Psi(Q_0)$

Definition: Substitution Estimator

- A substitution estimator is an estimator based on
- 1. Defining an estimator Q_n of Q₀
 - Where Q_n respects the statistical model
- 2. Plugging the resulting estimate into the parameter mapping Ψ in order to generate an estimate of the true parameter value
 - $\hat{\Psi}(P_n) = \Psi(Q_n)$

Ex. Simple substitution estimator based on the G-computation formula

- $O=(W,A,Y)^P_0$
- $\Psi(P_0)=E_W(E_0(Y|A=1,W)-E_0(Y|A=0,W)$
- We use Q₀ to refer to the parts of the observed data distribution that our target parameter is a function of
 - $-i.e. \Psi(P_0)=\Psi(Q_0)$
- Ex: $\Psi(P_0) = E_W(E_0(Y|A=1,W)-E_0(Y|A=0,W)$
 - $-\Psi(P_0)$ only a function of $\bar{Q}_0(A,W) \equiv E_0(Y|A,W)$ and
 - $-Q_0 = (\bar{Q}_0, Q_{0,W}) \qquad Q_{0,W} \text{ (distribution of } W)$

Simple substitution estimator based on the G-computation formula

- We define
- 1. An algorithm that takes the observed data as input and gives us an estimate of $E_0(Y|A,W)$
- 2. An algorithm that takes the observed data as input and gives us an estimate of P_0 (W=w)
- We can now substitute these estimates in place of the unknown observed data parameters

$$\Psi(P_0) = \sum_{w} (E_0(Y|A=1, W=w) - E_0(Y|A=0, W=w)) P_0(W=w)$$

$$\hat{\Psi}(P_n) = \sum_{w} (\hat{E}(Y|A=1, W=w) - \hat{E}(Y|A=0, W=w)) \hat{P}(W=w)$$

How might we estimate $P_0(W=w)$?

- Our estimator should respect our statistical model
 - Here, our statistical model is non-parametric
- A simple non-parametric estimator of $P_0(W=w)$: sample proportion $\frac{1}{n}\sum_{i=1}^n I(W_i=w)$
 - W_i is observed covariate value for subject i
- This doesn't assume anything about the distribution of W

A simple substitution estimator

Target parameter value of observed data distribution:

$$\Psi(Q_0) = E_W[E_0(Y|A=1,W) - E_0(Y|A=0,W)]$$

- To take the expectation over W, we take the empirical mean over W_i, i=1,...,n
 - Same as estimating P(W=w) as the sample proportion
- An estimator of $E_0(Y|A,W)$ thus gives us a substitution estimator:

$$\hat{\Psi}(P_n) = \Psi(Q_n) = \frac{1}{n} \sum_{i=1}^{n} [\bar{Q}_n(1, W_i) - \bar{Q}_n(0, W_i)],$$

where $\bar{Q}_n(A, W)$ is an estimator of $E_0(Y|A, W)$.

General implementation of substitution estimator based on G-computation formula

- 1. Estimate $\bar{Q}_0(A, W) = E_0(Y|A, W)$
- Use this estimate to generate a predicted outcome for each subject setting A=1 and setting A=0
 - Intuition: Mimics study where each individual received and did not receive the treatment
- 3. Estimate $\Psi(P_0)$ as the difference in the mean of these predicted outcomes

How might we estimate $E_0(Y|A,W)$?

- A simple non-parametric estimator of $E_0(Y|A,W)$: Take empirical mean of Y within strata defined by each possible value for (A,W)
 - Also referred to as non-parametric maximum likelihood estimator (NPMLE)
 - Same as fitting a saturated regression model

Empirical Mean of Y within strata defined by (A,W)

	W=1	W=0
A=1	35 (n=110)	5 (n=230)
A=0	10 (n=123)	27 (n=78)

HIV Example: Effect of switch to second line therapy on

- Intervention: a weekly pill organizer
- Designed to help patients remember to take their prescribed medications

Research Question:

Does use of a pill box improve adherence to antiretroviral drugs?

Example: Effect of Pill Box Use on Adherence to Antiretrovirals

- A= Pill Box "Mediset" Use
- Y= adherence to antiretroviral drugs
 - % of prescribed doses taken
- W= age, sex, recreational drug use, past adherence, type of regimen, CD4 count....

Research Question:

Does use of Pill Box improve adherence to antiretroviral drugs?

Simple Example: G-computation

Original Data

<u>ID</u>	<u>Pill Box</u> (A)	Crack Use (W)	Adherence (Y)	
1	1	1	0.7	
2	0	0	0.8	
3	1	1	0.4	
4	1	0	1	
5	0	1	0.4	
6	0	0	0.7	

$$\hat{E}(Y|A=1, W=1) = 0.55$$

$$\hat{E}(Y|A=0, W=1) = 0.4$$

$$\hat{E}(Y|A=1, W=0) = 1.0$$

$$\hat{E}(Y|A=0, W=0) = 0.75$$

Expanded Data with Predicted Outcomes

	<u>Pill Box</u>	<u>Predicted</u>
<u>ID</u>	<u>(a)</u>	Adherence (\hat{Y}_a)
→ 1	0	0.4
2	0	0.75
3	0	0.4
4	0	0.75
5	0	0.4
6	0	0.75
1	1	0.55
2	1	1.0
3	1	0.55
4	1	1.0
5	1	0.55
6	1	1.0

Simple Example: G-computation

Expanded Data with Predicted Outcomes

	Pill Box	<u>Predicted</u>	
<u>ID</u>	<u>(a)</u>	Adherence (\hat{Y}_a)	
1	0	0.4	
2	0	0.75	
3	0	0.4	L
4	0	0.75	
5	0	0.4	
6	0	0.75	
1	1	0.55	
2	1	1.0	
3	1	0.55	Į
4	1	1.0	ſ
5	1	0.55	
6	1	1.0	ل

Estimate of $E_W(E(Y|A=0,W)=0.575$ (equal to $E(Y_0)$ if W satisfies the back door criterion)

$$-\frac{1}{n}\sum_{i=1}^{n}\hat{E}(Y|A=0,W_i)=0.575$$

Estimate of $E_W(E(Y|A=1,W)$ (equal to $E(Y_1)$ if W satisfies the back door criterion)

$$\frac{1}{n} \sum_{i=1}^{n} \hat{E}(Y|A=1, W_i) = 0.775$$

Simple Example: G-computation

- Estimate of $E_0[Y|A=1]-E_0[Y|A=0]$ (confounded association between pill box use and adherence):
 - 0.7-0.63=0.07
- Estimate of $E_{w}[E_{o}(Y|A=1,W)-E_{o}(Y|A=0,W)]$
 - 0.775-0.575=0.20
 - An estimate of E[Y₁-Y₀] (effect of pill box use on adherence) if W satisfies the backdoor criteria

Note on Intuition

- Not really estimating what each subject's counterfactual outcome would have been...
 - In that case, we would not simulate the outcomes corresponding to the treatments we observed
 - This is just a hueristic to give some intuition
- Really, we are just implementing a substitution estimator
 - Plugging estimate of Q_0 into the parameter mapping Ψ

$$\hat{\Psi}(P_n) = \Psi(Q_n) = \frac{1}{n} \sum_{i=1}^{n} [\bar{Q}_n(1, W_i) - \bar{Q}_n(0, W_i)]$$

How to estimate $E_0(Y|A,W)$?

- NPMLE breaks down quickly if A and/or W are continuous or have multiple levels
 - As occurs when W has multiple components
 - End up with sparse or empty cells

Empirical Mean of Y within strata defined by (A,W)

	W=0	W=1	•••	W=100	
A=1	310 (n=1)	66 (n=12)		40 (n=30)	
A=0	10 (n=60)	5 (n=4)		?? (n=0)	

- We need alternative approaches to nonparametric estimation in this (very common) setting
 - Coming up next lecture.....

How else might we estimate $E_0(Y|A,W)$?

- Say we knew that this conditional expectation could be described by a <u>lower dimensional</u> <u>parametric model</u>
- We have real knowledge about the functional form of the relationship between the expectation of Y and (A,W)
 - i.e. Our statistical model is not Non parametric

How else might we estimate $E_0(Y|A,W)$?

- Ex. We know that $E(Y|A,W)=\beta_0+\beta_1A+\beta_2W+\beta_3A^*W \text{ for some } \beta$
- We can estimate β and thereby E(Y|A,W) by fitting a simple linear regression

- If E₀(Y|A,W) is estimated using <u>a linear model</u> without interactions between A and W,
 - Estimated coefficient on treatment is equivalent to the Gcomputation estimate of the ATE
- Ex: Estimate of E[Y|A,W] : $\bar{Q}_n(A,W) = \hat{E}(Y|A,W) = \hat{\beta}_0 + \hat{\beta}_1 A + \hat{\beta}_2 W$
- Estimate of ATE:

$$\hat{\Psi}(Q_n) = \frac{1}{n} \sum_{i=1}^n (\hat{E}(Y|A=1, W_i) - \hat{E}(Y|A=0, W_i))$$
$$= \frac{1}{n} \sum_{i=1}^n \hat{\beta}_1 = \hat{\beta}_1$$

- If E₀(Y|A,W) is estimated using a linear model with interactions between A and W
- Then the coefficients in the regression model provide a conditional effect estimate
 - Average treatment effect for a a given value of W
 - Average with respect to distribution of W to estimate the ATE

$$\bar{Q}_n(A, W) = \hat{E}(Y|A, W) = \hat{\beta}_0 + \hat{\beta}_1 A + \hat{\beta}_2 W + \hat{\beta}_3 W A
\hat{\Psi}(Q_n) = \frac{1}{n} \sum_{i=1}^n \hat{E}(Y|A = 1, W_i) - \hat{E}(Y|A = 0, W_i)
= \frac{1}{n} \sum_{i=1}^n \hat{\beta}_1 + \hat{\beta}_3 W_i
= \hat{\beta}_1 + \hat{\beta}_3 \hat{E}(W)$$

- If E₀(Y|A,W) is estimated using a <u>nonlinear model</u>
 - Ex. Logistic regression

$$\bar{Q}_n(A, W) = \hat{E}(Y|A, W) = \frac{1}{1 + exp^{-(\hat{\beta}_0 + \hat{\beta}_1 A + \hat{\beta}_2 W)}}$$

- Then the coefficient on A in the regression model provides a conditional effect estimate
 - Ex: Conditional casual odds ratio

$$exp(\hat{\beta}_1) = \frac{\hat{E}(Y|A=1,W)/(1-\hat{E}(Y|A=1,W))}{\hat{E}(Y|A=0|W)/(1-\hat{E}(Y|A=0,W))}$$
$$= \frac{\hat{E}(Y_1|W)/(1-\hat{E}(Y_1|W))}{\hat{E}(Y_0|W)/(1-\hat{E}(Y_0|W))}$$

- Regardless of how $E_0(Y|A,W)$ is estimated, can use the G-comp formula to get an estimate of the ATE
 - Or other target causal quantity that is a function of E(Y_a)
- Example: From Logistic regression to ATE

$$\bar{Q}_n(A, W) = \hat{E}(Y|A, W) = \frac{1}{1 + exp^{-(\hat{\beta}_0 + \hat{\beta}_1 A + \hat{\beta}_2 W)}}$$

$$\hat{\Psi}(Q_n) = \frac{1}{n} \sum_{i=1}^n \hat{E}(Y|A=1, W_i) - \frac{1}{n} \sum_{i=1}^n \hat{E}(Y|A=0, W_i)$$

$$= \frac{1}{n} \sum_{i=1}^n \frac{1}{1 + exp^{-(\hat{\beta}_0 + \hat{\beta}_1 + \hat{\beta}_2 W_i)}} - \frac{1}{n} \sum_{i=1}^n \frac{1}{1 + exp^{-(\hat{\beta}_0 + \hat{\beta}_2 W_i)}}$$

General Implementation of G-Computation for point treatment

- 1. Estimate $\bar{Q}_0(A, W) = E_0(Y|A, W)$
- Use this estimate to generate a predicted outcome for each subject setting A=1 and setting A=0
 - Intuition: Mimics study where each individual received and did not receive the treatment
- 3. Estimate $\Psi(P_0)$ as the difference in the mean of these predicted outcomes

Take home points

- Under specific conditions, the coefficient on exposure in a regression model equals the average treatment effect
- However, in many cases it does not
- It may still have a casual interpretation- eg it may be estimating a different casual parameter

Take home points

- Parametric multivariable regression is just one way to estimate E(Y|A,W)
- The resulting estimator can be plugged into the G-comp formula to get an estimate of the average treatment effect
- Whether or not this is a good idea depends on whether the regression is misspecified

Why do we need new tools?

- Even for a simple estimand like the Gcomp formula
- 1. NP MLE often breaks down in practical data settings: Sparse/empty cells
- 2. We often do <u>not</u> know that E(Y|A,W) can be described by a <u>lower dimensional parametric model</u>
 - Our true statistical model is non parametric
- We might still decide to estimate the conditional expectation by fitting the parameters of such a parametric model...

Why do we need new tools?

- Ex. We we do not know that $E(Y|A,W)=\beta_0+\beta_1A+\beta_2W+\beta_3A*W$ for some β
- However, we can still decide to estimate β and thereby E(Y|A,W) by fitting a simple linear regression
- However, if our model is wrong it may result in a bad estimate, and thus a poorly performing (biased) estimator

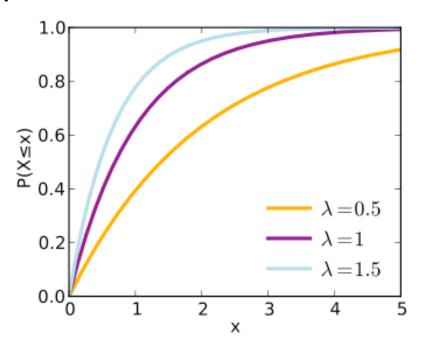
Motivation for Data adaptive approaches

- Often a statistical model that accurately represents our knowledge is non-parametric
 - Distribution of the observed data can take any form...
- If our statistical model does not represent our knowledge, it may not contain the truth
 - This can lead to biased estimators
- If we use an estimator that does not respect our true statistical model, it can lead to bias

Example: Why should we respect our model?

- Simple Example: X= Survival Time
- Estimand: P_0 (X \leq 2 years)
- Say we know X is exponentially distributed
 - Model: the set of exponential distributions

$$F(x; \lambda) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$



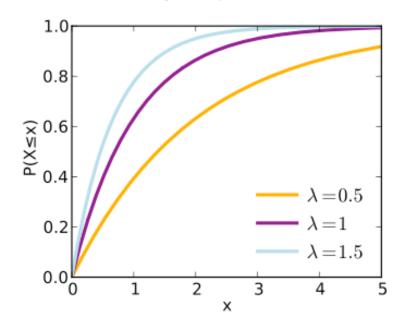
Example (1)

- Model: The set of exponential distributions
- To estimate $P_0(X \le 2 \text{ years})$, we can just estimate λ
 - Gives us an estimate of the whole distribution of X (and thus an estimate of our target parameter)

$$F(x; \lambda) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

MLE estimate:

$$\hat{\lambda} = \frac{1}{1/n \sum_{i=1}^{n} x_i}$$



Example (2)

- We know nothing about the distribution of X
- Model: Non-parametric
 - Puts no restrictions on the allowed distributions for X
 - This doesn't mean we assume that X is <u>not</u> exponentially distributed, it just means we consider more possibilities

Example (2): Option 1

- We don't know anything about the distribution of X
- We could assume it is exponential (ie assume an exponential model)
 - This model does not respect the limits of our knowledge!!
- This route suggests one possible estimator:

- MLE:
$$\hat{\lambda} = \frac{1}{1/n \sum_{i=1}^{n} x_i}$$
 $\hat{P}(X \le 2) = 1 - \exp^{-\hat{\lambda}2}$

Example (2): Option 2

- We don't know anything about the distribution of X
- We thus assume a non-parametric model
- This suggests a different estimator
 - A natural non-parametric estimator: the sample proportion

$$\hat{P}(X \le 2) = \frac{\sum_{i=1}^{n} I(X_i \le 2)}{n}$$

- Doesn't assume anything about the distribution of X
- Lets compare these two estimators....

Estimator performance

- Because an estimator is a function of random variables, it is itself a random variable
 - It has a distribution
- We can talk about its performance across many samples of size n (realizations P_n) drawn from the same underlying distribution P_0
- A few common measures of performance
 - Bias
 - Variance
 - Mean Squared Error

Some benchmarks for estimators

• <u>Bias</u>: How does the expectation of the estimator differ from the true parameter value?

$$Bias\left(\hat{\Psi}(P_n)\right) = E_0\left(\hat{\Psi}(P_n) - \Psi(P_0)\right)$$

 <u>Variance</u>: How much does the estimator vary across samples?

$$Variance\left(\hat{\Psi}(P_n)\right) = E_0\left[\left(\hat{\Psi}(P_n) - E_0(\hat{\Psi}(P_n))\right)^2\right]$$

• Mean Squared Error: On average, how far is the estimator from the truth?

$$MSE\left(\hat{\Psi}(P_n)\right) = E_0\left[\left(\hat{\Psi}(P_n) - \Psi(P_0)\right)^2\right]$$

Simple simulations

- Observed data: 200 i.i.d. copies of X drawn from an unknown distribution
- Target Parameter: P₀(X ≤ 2 years),
- Simulation 1
 - X^{∞} Exponential (rate λ =0.36)

$$F(x;\lambda) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

- Simulation 2
 - $X \sim \text{Weibull (shape k=5; scale } \lambda = 3)$

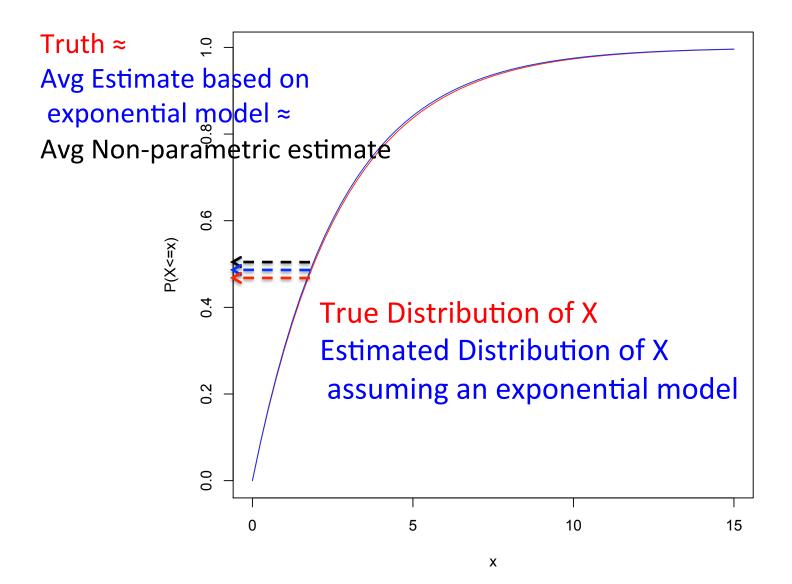
$$F(x; k, \lambda) = \begin{cases} 1 - e^{-(x/\lambda)^k}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

Results: Simulation 1 (X~Exponential)

 Bias/variance estimated based on 2000 samples each of size 200

Estimator	Truth	Mean estimate	Bias	Variance
Parametric (exponential model)	0.52	0.52	9e-4	5e-4
Non-parametric (sample proportion)	0.52	0.52	5e-4	1e-3

Results: Simulation 1 (X~Exponential)

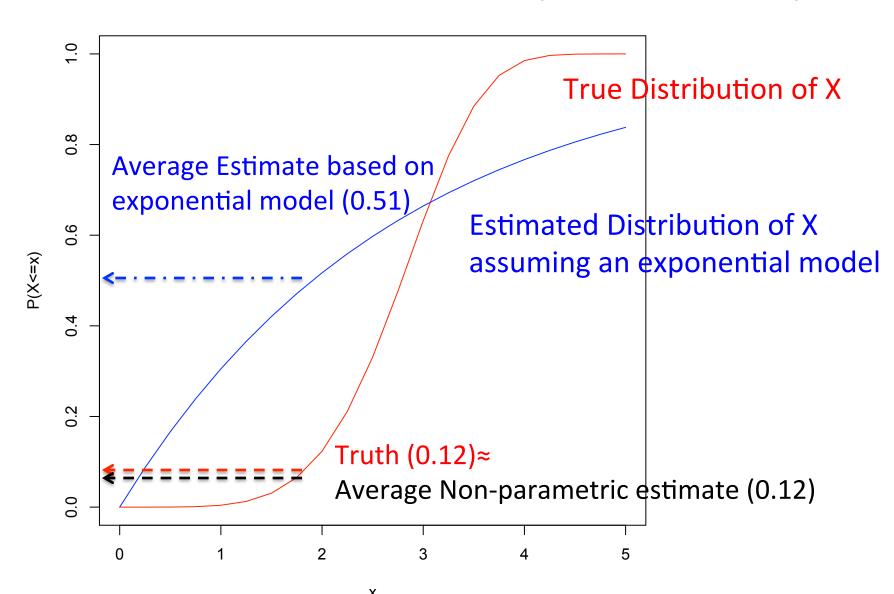


Results: Simulation 2 (X~Weibull)

 Bias/variance estimated based on 2000 samples each of size 200

Estimator	Truth	Mean estimate	Bias	Variance
Parametric (exponential model)	0.12	0.51	0.39	3e-5
Non-parametric (sample proportion)	0.12	0.12	3e-4	5e-4

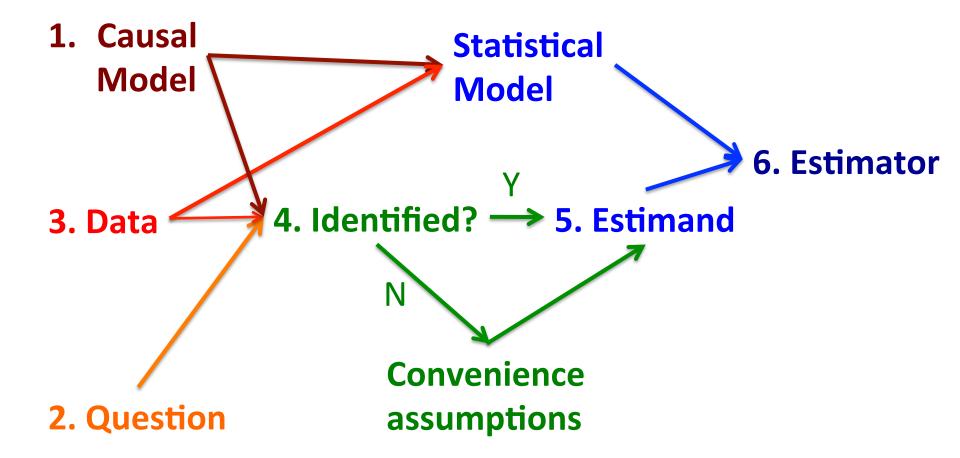
Results: Simulation 1 (X~Weibull)



This is a simple example

- There was an easy alternative here: the sample proportion provides a natural nonparametric estimator
- Real life is harder
 - More variables; More complex target parameters
- Coming up next...Estimation using high dimensional data in non-parametric statistical models

A Roadmap....



Key Points

- <u>Parameter</u>: a function with input a distribution in the statistical model and output a value in the parameter space
- <u>Estimator</u>: a function with input the observed data and output a value in the parameter space
- Simple substitution estimator for MSM parameter
 - Generate predicted values for each subject under each exposure of interest and regress on the MSM
- An estimator that does not respect statistical model can lead to poor estimates
 - Some measures of estimator performance: Bias, Variance, MSE