
Lecture 8: Estimation of causal 
effects using data adaptive 

estimators; Overview of variance 
estimation; Why new estimators?
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A roadmap for causal inference 
1. Specify Causal Model representing real

background knowledge 
2. Specify Causal Question  
3. Specify Observed Data and link to causal model
4. Identify : Knowledge + data sufficient?
5. Commit to an estimand as close to question as 

possible, and a statistical model representing 
real knowledge. 

6. Estimate 
7. Interpret Results
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Outline
1. Estimation of causal effects using data adaptive 

estimators
– Using a simple substitution estimator

2. Why do we need alternative estimators? (Part I)
– Bias-variance tradeoff revisited

3. Why do we need new estimators? (Part II)
– Reliable statistical inference

• Intro to:
– Asymptotic linearity and influence curves
– The non-parametric bootstrap
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References

• TLB Chapter 5 for a brief intro to 
asymptotically linear estimators and influence 
curves
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Machine Learning and Effect 
Estimation

• For point treatment effects, we are focusing on 
the following:
Ψ(P0)=EW[E0(Y|A=1,W)-E0(Y|A=0,W)]

• The empirical distribution of W gives us an 
estimate of P0(W=w)

• Data-adaptive estimation (eg. Super Learning) 
can give us an estimate of  E0(Y|A,W)

• Just plug in these estimates and you have an 
estimator of Ψ(P0)…?
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What’s wrong with this approach?

1. Wrong bias-variance tradeoff for our 
target parameter

2. No valid approach to statistical 
inference
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Example: Wrong Bias-Variance 
Tradeoff

• What if the estimator that does the best job 
predicting Y given A,W does not even include 
A as a predictor?
– A may not be adding much as a predictor 

compared to the set of candidate Ws
• An estimate of E0(Y|A,W) that does not 

include A will result in an estimate of Ψ(P0)=0
– Sometimes this may be a good estimate, but many 

times it will not
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Example
• A and W1 highly correlated; A weakly affects Y; W1 

strongly affects Y 

• Including A as a predictor in estimate of E(Y|A,W) could
1. Hurt prediction 
– Eg: Increase CV-MSE for E(Y|A,W) 
– You are adding an extra parameter (and thus extra 

complexity/variance) for not much gain in ability to predict Y
2. Help effect estimation 
– We don’t care about overall fit 
– We care about the effect of A on Y
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This is a specific example of a more 
general problem

• We could just force SL to keep A
– Eg stratify on A 

• However….when we do data-adaptive 
estimation, we are using cross-validated risk 
to choose the best bias-variance tradeoff for 
an estimator of E0(Y|A,W)

• This is generally not the best bias-variance 
tradeoff for 
Ψ(P0)=EW,0[E0(Y|A=1,W)-E0(Y|A=0,W)]
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Different parameters-> Different 
optimal bias-variance tradeoffs

• E0(Y|A,W) is a much more ambitious parameter 
than EW,0[E0(Y|A=1,W)-E0(Y|A=0,W)]

• An estimator of E0(Y|A,W) is trying to do the best 
possible job of predicting the mean of Y within 
every strata of A,W
– This might be a lot of strata
– As a result, the optimal estimator may be forced to 

accept a fair amount of bias in order to avoid 
becoming too variable 
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Different parameters-> Different 
optimal bias-variance tradeoffs

• An estimator of EW,0[E0(Y|A=1,W)-
E0(Y|A=0,W)] is just trying to do the best 
possible job of estimating one number
– The difference in the conditional means, averaged 

with respect to the distribution of W
• This means that the best bias-variance 

tradeoff for our estimand has less bias than 
the best bias-variance tradeoff for E0(Y|A,W)
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Summary: Why do we need alternative 
estimators? (Part I)

• Data adaptive methods/Super Learner do a great 
job estimating E0(Y|A,W) 

• E0(Y|A,W) is not what we care about
• If we just plug in the resulting estimate of 

E0(Y|A,W), we will get an estimate of 
EW,0[E0(Y|A=1,W)-E0(Y|A=0,W)] that is overly 

biased
– Not targeted at our parameter of interest

• TMLE: coming soon….
– Reduce the bias of the initial estimator of E0(Y|A,W) in 

a way that is targeted for our parameter of interest
12



What about the variance of our 
estimator?

• Our goal is not just to generate a point 
estimate of 
Ψ(P0)=EW,0[E0(Y|A=1,W)-E0(Y|A=0,W)] 

• We also want to quantify the statistical 
uncertainty in that estimate
– Hypothesis testing
– Confidence Intervals
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What about the variance of our 
estimator?

• If we knew P0, in order to estimate the 
variance of an estimator Ψ(P0), we could 
– Draw a very large number of samples of size n 

from the underlying distribution P0

– Rerun our estimator in each sample
– Calculate the variance of these estimates across 

the samples
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What about the variance of our 
estimator?

• This is what we did in R assignment #2
– To improve our estimate of the variance, we just 

need to increase the number of samples
• When we are analyzing real data, we don’t 

know the true distribution of the observed 
data (P0)
– Can’t draw multiple samples from it and then 

evaluate the behavior of our estimator across the 
samples
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Variance Estimation
• Lots of classical theory and software for 

estimation of the parameters of correctly 
specified parametric models
– Ex. Parameters of a regression of Y on A,W estimated 

using OLS or MLE
– Standard theory/software provide both point 

estimates of these parameters and estimates of their 
variance

• However, our target parameter generally does 
not correspond to a coefficient in a correctly 
specified parametric regression model
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Why new tools (1)?
• Say one could a priori correctly specify a 

parametric regression model
• Our estimand often does not correspond to a 

single coefficient in this model
• Ex. Logistic regression

E0(Y |A,W ) =

1

1 + exp

�(�0+�1A+�2W )

 (P0) = E0,W (E0(Y |A = 1,W )� E0(Y |A = 0,W ))

ˆ

 (Pn) =
1

n

nX

i=1

✓
1

1 + exp

�(�̂0+�̂1+�̂2Wi)
� 1

1 + exp

�(�̂0+�̂2Wi)

◆
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Why new tools (2)?
• A trickier challenge…
• In many applied problems we can’t a priori

specify a correct parametric regression model 
for E0(Y|A,W)

• The curse of dimensionality means we have 
to use data-adaptive estimators
– We look at the data (in supervised way)

• Our variance estimator needs to respect this
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Example
• O=(W1,W2,W3,A,Y)
• Ψ(P0)=EW[E0(Y|A=1,W)-E0(Y|A=0,W)]
• Statistical model is non parametric
• We recognize that our estimator must be an 

a priori specified algorithm 
– We select a library of candidate algorithms for 

estimating E0(Y|A,W)
– We use the L2 loss function and cross validation 

to select among them
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• Our library of candidate estimators of  
E0(Y|A,W) contains four a priori specified 
parametric models

1. E(Y|A,W)=β0+β1A+β2W1+β3W2+β4W3

2. E(Y|A,W)=β0+β1A+β2W1+β3W2+β4W3+β5W2×W3

3. E(Y|A,W)=β0+β1A+ β2W1+β3W2+β4W3+β5W2×A
4. E(Y|A,W)=β0+β1A+ β2W1+β3W2+β4W3+β5W2×A +β6W3×A

Example
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• We choose the candidate with the smallest cross 
validated mean squared prediction error

1. E(Y|A,W)=β0+β1A+β2W1+β3W2+β4W3
– Estimated CV-MSE =.14

2. E(Y|A,W)=β0+β1A+β2W1+β3W2+β4W3+β5W2×W3
– Estimated CV-MSE =.11

3. E(Y|A,W)=β0+β1A+ β2W1+β3W2+β4W3+β5W2×A
– Estimated CV-MSE =.22

4. E(Y|A,W)=β0+β1A+ 
β2W1+β3W2+β4W3+β5W2×A+β6W3×A
– Estimated CV-MSE =.18

Example
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Example

• Candidate #2 gives us the following estimate: 
Ê(Y|A,W)=1+3.2A+2W1-0.9W2+2.1W3+3.2W2*W3

• We plug this estimate into the G-computation 
formula to get an estimate of 
Ψ(P0)=EW[E0(Y|A=1,W)-E0(Y|A=0,W)]

• What is the point estimate of our estimand? 
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Example

• What about the variance of our estimator?
– A point estimate by itself is not very helpful

• Assume our identifiability assumptions hold, 
and thus that Ψ(P0)=EU,X(Y1-Y0)

• What have we learned about the effect of A 
on Y?
– If the 95% CI is (-6.8,13.2)?
– If the 95% CI is (2.2, 4.2)?

23



Example
• What about using the variance estimate 

provided by standard statistical software? 

• Could we just run lm(Y~A+W1+W2*W3) in R 
and use the variance estimate for ?

Ê(Y |A, W ) = �̂0 + �̂1A + �̂2W1 + �̂3W2 + �̂4W3 + �̂5W2 �W3

�̂(Pn) = �̂1

�̂1
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Example

• No. Why not?
• Assumes that the model 

E(Y|A,W)=β0+β1+β2W1+β3W2+β4W3+β5W2×W3
was a priori specified

• In fact it was selected from among a pool of 
candidate estimators

• This process is part of our estimator
– If we ignore this we will underestimate its 

variance
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Alternative approaches to variance 
estimation

1. Influence Curves
– Basis of “robust” variance estimators

2. Resampling based methods
– We will focus on the non-parametric bootstrap

• For both: will provide here a very brief, 
practically oriented introduction
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1. Influence Curves and Asymptotically 
Linear Estimators

• An estimator  is asymptotically linear with 
influence curve IC(Oi) if it satisfies

Converges to 0 
in probability as
n->∞

E0(IC(O))=0
Var(IC(O)) Finite

p
n( ̂(Pn)� (P0)) =

1p
n

nX

i=1

IC(Oi) + oP0(1)
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Influence Curves and Asymptotically 
Linear Estimators

• Can rewrite:

– Estimator behaves like an empirical mean of indep. RV 
(plus a second order term)

• This has a number of nice implications
1. Consistency
– As sample size goes to infinity, our estimator 

converges in probability to the estimand
– By Weak Law Large Numbers: sample average 

converges in probability to expected value

 ̂(Pn) =  (P0) +
1

n

nX

i=1

IC(Oi) + oP0(
1p
n
)

�̂(Pn) P� �0
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Desirability of Asymptotic Linearity 
2. Asymptotic normality

– Where V is variance of the influence curve 
(E0(IC(Oi)2) 

– By Central Limit Theorem
• A robust approach to variance estimation
– Variance of is well approximated by the 

variance of the influence curve divided by n

⇤
n

�
�̂(Pn)��(P0)

⇥
D⇥ N(0, V )

 ̂(Pn)
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Recap: Challenge of variance 

estimation
• In many applied problems we can’t a priori

specify a correct parametric regression model 

for E0(Y|A=1,W)

• The curse of dimensionality means we have 

to use data-adaptive estimators

– We look at the data (in supervised way)

• Our variance estimator needs to respect this
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Summary: Asymptotically linear 
estimators

• Consistent (estimator converges to truth as n 
goes to infinity)

• Bias goes to 0 are rate faster than 1/√n
• “Robust” variance estimation based on the 

Influence curve
– Influence curve is a function of the observed data
– Variance of the estimator well approximated by 

sample variance of the Influence Curve divided by 
sample size n
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Does this solve our problem?

• No.
• IC- based inference relies on the estimator 

being asymptotically linear at P0

• No theory says that a plug-in estimator based 
on Super Learning is asymptotically linear 
– Or even that your estimator has a limit 

distribution
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Resampling Based approaches

• Recall- if we knew P0 we could resample from 

it many times and apply our estimator to each 

resample

– This would tells us about the whole distribution of 

the estimator (including its variance)

• We don’t know P0. Instead, we have a single 

sample of Oi, i=1,…,n, drawn from P0
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Non-Parametric Bootstrap

• If we knew P0 we could resample from it many 
times and apply our estimator to each 
resample

• Non-parametric bootstrap: approximate 
resampling from P0 by resampling from the 
empirical distribution
– Puts a weight of 1/n on each copy of Oi
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Non-Parametric Bootstrap

1. Generate a single bootstrap sample by 
sampling with replacement n times from our 
original sample 
– Putting a weight of 1/n on each subject i

• Because we sample with replacement, the 
bootstrap sample will differ from the original 
sample
– Some subjects will appear more than once
– Other subjects will not appear at all
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Non-Parametric Bootstrap

2. Apply our estimator to the bootstrap sample
– Need to rerun the whole estimator
• For example any data adaptive algorithms you used are 

part of your estimator
– This gives you a point estimate for that bootstrap 

sample
3. Repeat this process B times (where B is large)
– Gives you an estimate of the distribution of your 

estimator resampling from P0

36



Non-Parametric Bootstrap
• Estimate the variance of the estimator across 

B bootstrap samples

• 95% CI: (assumes normal distribution)
�̂(Pn)

+
� 1.96⇥ �se(�̂(Pn))

ˆvar( ˆ (Pn)) =
1

B

BX

b=1

⇣
ˆ

 (P b
n)�

¯

ˆ

 (P b
n)

⌘2
,

where P b
n is the bth bootstrap sample from Pn

and

¯

ˆ

 (P b
n) =

1

B

BX

i=1

ˆ

 (P b
n)
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Practical Consideration

• Computing time 
• If you have a highly adaptive estimator and a 

large (or even medium sized) data set, running 
your estimator for a single sample can be slow
– Eg you estimate E(Y|A,W) using a Super Learner 

with a lot of data adaptive algorithms in the 
library

• Rerunning your estimator many times (in each 
of the bootstrap datasets) can be really slow
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A more serious concern…
• The theory supporting the use of the NP-

Bootstrap relies on 
1. Estimator being asymptotically linear at P0

2. Estimator not changing behavior drastically if 
sample from a distribution Pn near P0
– Counter Example: An algorithm used by Super 

Learner does not handle ties well 
• Ties are rare in Pn

• Ties are more common in bootstrap sample from Pn due 
to re-sampling with replacement

39



One straightforward thing to do…

• Look at the distribution of your estimator 
across many bootstrap samples

• If it is highly non-normal, not a good idea to 
construct 95% confidence intervals assuming a 
normal distribution 

• Alternative: Use the 2.5% and 97.5% quantiles
of the bootstrap distribution
– At least provides the desired coverage under the 

bootstrap distribution
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Summary: Non-Parametric Bootstrap
1. Resample with replacement n times from your data 
2. Apply you estimator to each sample
3. Repeat many times

• Can construct 95% CI either by
1. Assume normality
–
– Estimate variance of your estimator as its variance across 

the bootstrap samples
2. Take 2.5th% and 97.5th% quantiles
• Always a good idea to look at the bootstrap 

distribution of your estimator 

�̂(Pn)
+
� 1.96⇥ �se(�̂(Pn))
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This does not address more 
fundamental concern!

• If distribution of your estimator across many 
bootstrap samples is highly non-normal, 
concerned about

1. Lack of normality of the estimator itself
2. The bootstrap is not doing a good job 

approximating the true sampling distribution 
of estimator
– The behavior of the estimator is quite different 

sampling from Pn than sampling from P0
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Summary: Why do we need alternative 
estimators? (Part II)

• Statistical inference for the SL-based plug-in 
estimator is a challenge

• Both Influence curve and bootstrap–based 
approaches rely on estimator being 
asymptotically linear
– Estimator converges to a normal limit distribution
– Bias goes to 0 at rate faster than 1/√n 

• No theory says that a plug in estimator based 
on Super Learning is asymptotically linear 
– Or even that this estimator has a limit distribution
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In sum, no easy out…(yet)

• Reliance on misspecified parametric models 
can result in very biased estimators

• Use of machine learning and cross validation 
can help you to do a better job estimating  
E(Y|A,W)

• However… 
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In sum, no easy out…(yet)

• Downsides to just plugging in a data-adaptive 
estimate of E(Y|A,W) into the G-comp formula

1. Wrong Bias variance tradeoff for estimand
2. No way to get reliable variance estimates

-> Reluctance to use machine learning for effect 
estimation by some….
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How to proceed?

• Double Robust estimators; TMLE
• Can incorporate data adaptive (Machine 

Learning) estimation methods and still provide 
valid statistical inference
– NP-boot/IC-based variance estimation under 

specific conditions…
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Key points

• Can use SL to estimate E(Y|A,W) non-

parametrically

– Plug resulting estimate into G-comp formula to get 

estimate of Ψ(P0)=E(E(Y|A=1,W)-E(Y|A=0,W)

• However…

1. The best bias-variance tradeoff for E(Y|A,W) 

is more biased than optimal for Ψ(P0)

2. No good approach to statistical inference

• Need new estimators
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