R Lab 5 - TMLE

Introduction to Causal Inference

Goals:

1. Review the causal roadmap.

2. Code TMLE for the G-computation estimand.

3. Understand the basics of the 1tmle package.

4. Use the 1tmle package to explore the double robustness of TMLE.

Next lab:
We will implement the non-parametric bootstrap to estimate the standard error of the estimators. We will also
use the sample variance of the estimated influence curve to obtain inference for TMLE.

1 Background

Dr. Alan Grant: “T-Rex doesn’t want to be fed. He wants to hunt. Can’t just suppress 65 million years of gut
instinct.” - Michael Crichton

We are interested in estimating the causal effect of prior experience with Dinosaurs on injury severity on
Isla Nublar, the location of the InGen lab. Suppose we have data on the following variables:

W1: gender (1 for male; 0 for female)

- W2: intelligence (scale from 0 to 1; with higher values for smarter)

W3: handy /inventiveness (continuous and scaled; with larger, positive values for more MacGyver-ness)
- W4: running speed (continuous and scaled; with larger, positive values for faster)

A: prior Dinosaur experience (1 for yes; 0 for no)

- Y seriousness of injury (scale from 0 to 1; with higher values for more severe)

Let W = (W1, W2, W3, W4) be the vector of baseline covariates.

http://www.thesambarnes.com/web-project-management/account-management-for-the-web-project-manager-part-1/
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Causal Roadmap Rundown

. Specify the Question:

What is the causal effect of prior experience on injury severity in Jurassic Park?

. Specify the structural causal model (SCM) M”:

- Endogenous nodes: X = (W, A,Y), where W = (W1,W2,W3,W4) is the set of baseline covariates
(gender, intelligence, MacGyver-ness, running speed), A is prior Dinosaur experience, and Y is injury
severity. For simplicity, we have condensed the baseline characteristics into a single node.

- Background variables (Exogenous nodes): U = (Uw,Ua,Uy) ~ Py. We place no assumptions on the
distribution Py .

- Structural equations F:

W = fw(Uw)
A= fa(W,Uy)
Y = fY(W7A7 UY)

We have not placed any restrictions on the functional forms.

. Specify the causal parameter of interest:

We are interested in the causal effect of prior Dinosaur experience on expected injury severity on Isla
Nublar (i.e. the average treatment effect):

U (Py,x) = Eu,x (Y1) — Ey.x (Yo)

where Y, is the counterfactual outcome (injury severity), if possibly contrary to fact, the subject had
Dinosaur-experience A = a.

. Specify the link between the structural causal model (SCM) and the observed data:

We assume that the observed data O = (W, A,Y) ~ Py were generated by sampling n times from a data
generating described by the SCM. The statistical model M for the set of allowed distributions of the
observed data is non-parametric.

. Assess identifiability:

In the original structural causal model M7, the target causal parameter is not identified from the ob-
served data distribution. We need make assumptions about the independence of the background factors:
Ua AL Uy and (i) Ua AL Uw, or (ii) Uy 1L Uw. Then the backdoor criteria will hold conditionally on
the covariates W = (W1, W2, W3,W4). We use MT" to denote the original SCM augmented by the
convenience-based assumptions needed for identifiability.

To identify Ey x (Y,) with the G-Computation formula, we also need the positivity assumption to hold
mingea Po(A=a|W =w) >0

for all w for which Po(W = w) > 0. In terms of our example, there must be a positive probability of being
dinosaur-experienced and not being dinosaur-experienced within strata of baseline covariates.

. Specify the statistical estimand:

The target parameter of the observed data distribution (which equals the causal parameter in the aug-
mented causal model M* *) is given by the G-Computation formula:

U(Py) = Eo[Eo(Y|A=1,W) —Eo(Y|A=0,W)]
= Z [QO(LU}) - QO(O;w)}Po(W = w)

This is our statistical estimand.

. Estimate the chosen parameter of the observed data distribution:
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(a) Simple substitution estimator based on the G-Computation formula:
A 1o~ 2 -
Vss(P) = - Z (Q(1,W;) — Q(0,W;))

where P is the empirical distribution and Q(A, W) is the estimate of the conditional mean out-
come given the exposure (experience with Dinosaurs or not) and baseline covariates Qo(A, W) =
Eo(Y|A, W).

- Consistency of the simple (non-targeted) substitution estimator depends on consistent estimation
of the conditional mean outcome Qg (A, W).

(b) Standard (unstabilized) inverse probability weighted estimator (IPTW):

Y;

R 1 [I(A;=1) I(4;=0)
Urprw (P) = — [ p -
® =52 Gawy oy
where §(1|W;) = P(A; = 1|W;) is an estimate of the exposure mechanism (i.e. the conditional prob-
ability of having Dinosaur experience, given the baseline covariates).

- Consistency of IPTW estimators depends on consistent estimation of the exposure mechanism
go(1]W) = P(A = 1|W).

(c) Targeted maximum likelihood estimation (TMLE):

rares(®) = -3 (@401, W) — @30, W)

i=1

where Q7 (A, W) denotes the targeted estimate of the conditional mean outcome, given the exposure
and baseline covariates Qo(A, W).

- Implementation requires estimation of both the conditional mean function Qg (A, W) and the expo-
sure mechanism go(A|W).

- Double robust estimators are consistent if either Qo(A, W) or go(A|W) is estimated consistently.

- If both Qo(A, W) and go(A|W) are estimated consistently (and at reasonable rates), TMLE will be
efficient and achieve the lowest possible asymptotic variance over a large class of estimators.

- These asymptotic properties describe what happens when sample size goes to infinity and also
translate into lower bias and variance in finite samples.

If we apply an estimator to our observed data (n i.i.d. copies of O drawn from Py), we get an estimate (a
number). The estimator is function of random variables; so it is a random variable. It has a distribution,
which we can study theoretically or using simulations.

Note: An estimator is consistent if the point estimates converge (in probability) to the estimand as sample
size n — 00.

8. Inference and interpret results:
In the next lab, we will implement the non-parametric bootstrap for variance estimation for the three
types of estimators. We will use the sample variance of the estimated influence curve to obtain inference
for the TMLE.

3 Import and explore data set RLab5.TMLE. csv.

1. Set the seed to 252.
2. Use the read.csv function to import the dataset and assign it to dataframe ObsData.

3. Use the head and summary functions to explore the data.
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4. Use the nrow function to count the number of subjects in the data set. Assign this number as n.

Solution:

> set.seed(252)

> # Import the data set and assign it to object ObsData; explore
> ObsData<- read.csv("RLab5.TMLE.csv")
> names (ObsData)

[1] |Iw1|l l|w2ll llw3l| Ilw4ll |IAI| IIYII

> head(ObsData)

Wi w2 w3 w4 A Y
1 0 0.53080879 1.33425653 0.84889241 1 0.002010378
2 0 0.68486090 1.59585299 0.54299062 0 0.001031028
3 1 0.38328339 -1.28106043 -0.39391379 0 0.591290943
4 1 0.95498800 0.06046723 0.34488307 0 0.500392409
5 0 0.11835658 0.08203773 0.05144746 1 0.371959296
6 1 0.03910006 -1.78980628 -1.40836264 0 0.078282481
> summary (ObsData)
Wi w2 w3 w4
Min. :0.00 Min. :0.0006053 Min. :-3.26337 Min. :-3.08419
1st Qu.:0.00 1st Qu.:0.2282640 1st Qu.:-0.67585 1st Qu.:-0.69567
Median :0.00 Median :0.4809893 Median :-0.06790 Median : 0.01021
Mean :0.48 Mean :0.4902962 Mean :-0.01983 Mean :-0.01145
3rd Qu.:1.00 3rd Qu.:0.7570638 3rd Qu.: 0.70675 3rd Qu.: 0.68237
Max. :1.00 Max. :0.9988775 Max. : 3.57008 Max. : 3.43078
A Y
Min. :0.000 Min. :0.00000
1st Qu.:0.000 1st Qu.:0.05332
Median :0.000 Median :0.30312
Mean :0.271 Mean :0.29550
3rd Qu.:1.000 3rd Qu.:0.50466
Max. :1.000 Max. :0.77292

> # can get the dimensions
> dim(ObsData)

[1] 1000 6

> n<- nrow(ObsData)
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Implement TMLE for the G-computation estimand

1. Load the SuperLearner package. Then specify the Super Learner library with the following
algorithms: SL.glm, SL.step and SL.gam. In practice, we would want to use a larger library with a
mixture of simple (e.g. parametric) and more aggressive libraries.

> library("SuperLearner")

> #

specify the library

> SL.library<- c("SL.glm", "SL.step", "SL.gam")

2. Use Super Learner to estimate Ey(Y|A, W) = Q¢(A, W), which is the expected injury severity
given the exposure (prior experience) and baseline covariates.

(a)
(b)

Create dataframe X consisting of the covariates (W1, W2, W3, W4) and the exposure A. Also create
dataframe X1 where A has been set to 1, and create dataframe X0 where A has been set to 0.

Estimate Qo(A,W) by running SuperLearner. Call this object QbarSL. Be sure to specify the
SL.1library and the appropriate family.

> @barSL<- SuperLearner (Y=0ObsData$Y, X=X, SL.library=SL.library, family="binomial")
Use the predict function to obtain initial estimates of the expected outcome, given the observed
exposure and covariates 62(/47 w).

> @barAW <- predict(QbarSL, newdata=0bsData)$pred

The argument newdata=0bsData specifies that we want to predict the outcome using as input the
observed exposure and covariates.

Also obtain the initial estimates of the expected outcome for all units under the exposure é(l, W).
Now we specify newdata=X1 to predict the outcome using as input X1, where A = 1 for all units.

> @bariW<- predict(QbarSL, newdata=X1)$pred

Finally, obtain the initial estimates of the expected outcome for all units under no exposure QQ(O7 W).
Now we specify newdata=X0 to predict the outcome using as input X0, where A = 0 for all units.

> @barOW<- predict(@barSL, newdata=X0)$pred

Evaluate the simple substitution estimator by plugging the estimates 62(1, W) and 62(0, W) into the

target parameter mapping:

Ugs(P) = %Zé(lvwi) - é((),Wi)

Note: This step is not part of the TMLE algorithm, but done for comparison.

3. Estimate the exposure mechanism go(1|W) = Py(A = 1|W), which is the conditional probability
of having Dinosaur experience, given baseline covariates.

(a)

Estimate go(A|W) by running SuperLearner. Call this object gHatSL. Since we are estimating the
exposure mechanism, specify the-outcome-for-prediction with Y=0bsData$A and the predictors as the
baseline covariates with X=subset (ObsData, select= -c(A,Y)). Use the same library.

> gHatSL<- SuperLearner (Y=ObsData$A, X=subset(ObsData, select= -c(4,Y)),
+ SL.library=SL.library, family="binomial")
The predicted probability of being Dinosaur experienced, given the subject’s baseline characteristics
g(A = 1|W), can be accessed with gHatSL$SL.predict

i. Assign the predicted probability of being experienced §(A = 1|W) to gHat1W:

> gHat1W<- gHatSL$SL.predict
ii. Assign the predicted probability of not being experienced g(A = 0|IW) to gHatOW.
iii. Look at the distribution of estimated probabilities: §(1|W) and g(0|W).



Intro. to Causal Inference R Lab #5 6

4. Use

(a)

(b)
(c)

iv. Create empty vector gHatAW. Among subjects with A = 1, assign the predicted probabilities
g(1|W). Among subjects with A = 0, assign the predicted probabilities §(0|WV).

these estimates to create the clever covariate:

I(A=1) H(A—O))
g(wy) - g(o[w)

H(A,W) = <

Calculate H. AW for each subject:
> H.AW<- as.numeric(ObsData$A==1)/gHatlW - as.numeric (ObsData$A==0)/gHatOW

For subjects with A = 1, the clever covariate is 1 over the predicted probability of being experienced,
given the baseline covariates. Among subjects with A = 0, the clever covariate is -1 over the predicted
probability of not being experienced, given the baseline covariates (A = 0|W).

Also evaluate the clever covariate at A = 1 and A = 0 for all subjects. Call the resulting vectors
H.1W and H.OW, respectively.

Evaluate the IPTW estimator by taking the empirical mean of the weighted observations:

I IA—D 1R IA—0)
Viprw (P) = E;WYL n — §(0|W;) Y
_l - H(Aizl)_H(AZZO)
- n; [ g(1wi)  g(o|wy) ]Y

As before, this is not part of the TMLE algorithm, but implemented for comparison.

5. Target the initial estimator of the conditional mean outcome Q(A,W) with information in
the estimated exposure mechanism §(1|WW).

(a)

Run a univariate regression of the outcome Y on the clever covariate H(A, W) with the (logit of the)
initial estimator as offset. Specifically, we estimate the coefficient € by fitting the following logistic
regression model

logit[Q* (A, W)] = logit [Q(A, W)] + eH (A, W).

Note there is no intercept (i.e. there is no Gy term), and the coefficient on the (logit of the) initial
estimator is set to 1.

> logitUpdate<- glm(ObsData$Y ~ -1 +offset(qlogis(QbarAW)) + H.AW,
+ family="'binomial')

o We are again calling the glm function to fit a generalized linear model.

e On the left hand side of the formula, we have the outcome Y.

e On the right hand side of the formula, we suppress the intercept by including -1 and use as
offset the logit of our initial Super Learner estimates QbarAWw.

In R, logit(xz) = log(xz/(1 — x)) function is given by qlogis(x).

The only main term in the regression is the clever covariate H (A, W).

Including family=‘binomial’ runs logistic regression.

Again ignore any warning message.

> # we can examine the output by typing
> summary (logitUpdate)

Let epsilon denote the resulting maximum likelihood estimate of the coefficient on the clever co-
variate H. AW.

> epsilon<- logitUpdate$coef
> epsilon
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(c¢) Update the initial estimate of é(A, W) according to the fluctuation model:

logit[Q* (A, W)] = logit[Q(A, W)] + eH (A, W)

Q" (A, W) = logit " |logit[Q(A, W)] + eH(A, W)

> @barAW.star<- plogis(qlogis(QbarAW)+ epsilon*H.AW)

In R, the inverse-logit function is given by plogis(x).

(d) Plug-in the estimated coefficient € to yield targeted estimates of the expected outcome under the
exposure Q*(1, W) and under no exposure Q*(0, W):

Q*(1,W) = logit™* [logit [Q(L,W)] + eH(1, W)}

Q*(0,W) = logit ™! [logit [Q(0,W)] + eH (0, W)}

Recall H(1,W) is the clever covariate evaluated for all units under the exposure, and H(0, W) is the
clever covariate evaluated for all units under no exposure.

> @bariW.star <- plogis( qlogis(QbarlW.star)+ epsilon*H.1W)
> @barOW.star <- plogis( qlogis(QbarOW.star)+ epsilon*H.OW)

(e) Optional: Try updating again. What is updated €7
6. Step 6. Estimate the statistical parameter by substituting the targeted predictions into the
G-Computation formula.
Estimate ¥(IPy) by averaging the difference in the targeted predictions:

7 1 . nE] nE]
Tras®) = 13 {E (VilA; = 1,W3) — B (¥i[ 4; = 0, W)
i=1
> PsiHat.TMLE <- mean(@barlW.star- Q@barOW.star)
> PsiHat.TMLE

Solution:

>

> # 1. Load the Super Learner package and specify the library
>

> library("SuperLearner")

> # specify the library

> SL.library<- c("SL.glm", "SL.step", "SL.gam")

# dataframe X with baseline covariates and exposure
X<-subset (ObsData, select=c(A, W1, W2, W3, W4))

# set the exposure=1 in X1 and the exposure=0 in X0
X1 <- X0<-X

X184 <- 1 # under exposure

X0$A <- 0 # under control

VVVVVVVVYV




Intro. to Causal Inference

R Lab #5

vV V. V.V VvyVv

VvV Vv

Call:
SuperLearner(Y = ObsData$Y, X = X, family = "binomial", SL.library = SL.library)

A QbarAw

995 0 0.1518816
996 1 0.4317119
997 0 0.1703507
998 0 0.3545315
999 0 0.1177309
1000 0 0.4483481
> # note
> PsiHat.
> PsiHat.SS
[1] -0.07844085
> #
> # 3

#
>
>
+
> gHatSL
Call:

> # call Super Learner
> @barSL<- SuperLearner (Y=0ObsData$Y, X=X, SL.library=SL.library, family="binomial")
> (@barSL

Risk Coef

0
0
0
0
0
0

SL.glm_All 0.04650504 0
SL.step_All 0.04669083 0
SL.gam_All 0.01380438 1

QbarilWw QbarOwW

.1026812 0.1518816
.4317119 0.5434104
.1158743 0.1703507
.25956846 0.3545315
.0784898 0.1177309
.3415719 0.4483481

# call Super Learner for the exposure mechanism
gHatSL<- SuperLearner(Y=ObsData$A, X=subset (ObsData, select= -c(4,Y)),

# get the expected injury severity, given the observed exposure and covariates
@barAW <- predict(@barSL, newdata=0ObsData)$pred

# expected injury severity, given A=1 and covariates

@bariW<- predict (@barSL, newdata=X1)$pred

# expected injury severity, given A=0 and covariates

@barOW<- predict (@barSL, newdata=X0)$pred

# the fitted value at the observed exposure should equal the fitted value
# under when A=a
> tail(data.frame (A=0ObsData$d, @barAW, QbarlW, @barOW))

the simple substitution estimator would be
SS<-mean (QbariW - @barOW)

SL.library=SL.library, family="binomial")

SuperLearner(Y = ObsData$A, X = subset(ObsData, select = -c(A, Y)), family = "binomial",
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SL.library = SL.library)

Risk Coef
SL.glm_All 0.1986571 0
SL.step_All 0.1981094 0
SL.gam_All 0.1864084 1

> # generate the predicted prob of being experienced, given baseline cov

> gHat1W<- gHatSL$SL.predict

> # generate the predicted prob of not being experienced, given baseline cov
> gHatOW<- 1- gHatlW

> # summary of propensity scores
> summary (data.frame(gHat1W, gHatOW))

gHat1W gHatOW

Min. :0.1882 Min. :0.1209

1st Qu.:0.2120 1st Qu.:0.7031

Median :0.2347 Median :0.7653

Mean :0.2710 Mean :0.7290

3rd Qu.:0.2969 3rd Qu.:0.7880
:0 :0

Max. .8791 Max. .8118

# generate the predicted prob of the obs experience, given baseline cov
gHatAW<- rep(NA, n)

gHatAW[ObsData$A==1]<- gHat1W[ObsData$A==1]

gHatAW[ObsData$A==0]<- gHatOW[ObsData$A==0]

vV V. Vv VvV

A\

# check that the pred prob of the obs exposure equals the pred prob
# when A=a
tail (data.frame(ObsData$A, gHatAW, gHatlW, gHatOW))

\2Y

ObsData.A gHatAW gHat1W gHatOW

995 0 0.7313503 0.2686497 0.7313503

996 1 0.1988351 0.1988351 0.8011649

997 0 0.6928286 0.3071714 0.6928286

998 0 0.7587797 0.2412203 0.7587797

999 0 0.6946935 0.3053065 0.6946935

1000 0 0.8051628 0.1948372 0.8051628

>

> # 4. Create the clever covariate H(A,W) for each subject

> H#———————————

> H.AW<- as.numeric(ObsData$A==1)/gHatlW - as.numeric (ObsData$A==0)/gHatOW
> # equiv: H.AW<- (2+0ObsData$A-1)/ gHatAW

>

> # also want to evaluate the clever covariates at A=1 and A=0 for all subjects
> H.1W<- 1/gHat1W

> H.OW<- -1/gHatOW
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> tail(data.frame(ObsData$A, H.AW, H.1W, H.OW))

ObsData.A H.AW H.1W H.OW
995 0 -1.367334 3.722319 -1.367334
996 1 5.029293 5.029293 -1.248183
997 0 -1.443358 3.255511 -1.443358
998 0 -1.317906 4.145589 -1.317906
999 0 -1.439484 3.275397 -1.439484
1000 0 -1.241985 5.132490 -1.241985

> #IPTW estimator of the G-computation formula:
> PsiHat.IPTW <-mean( H.AW*ObsData$Y)
> PsiHat.IPTW

[1] -0.08494535

> # equiv
> mean(as.numeric (ObsData$A==1) /gHat1W*0ObsData$Y) -
+ mean(as.numeric(ObsData$A==0)/gHatOW*0bsData$Y)

[1] -0.08494535

> -
> # 5. Update the initial estimator of Qbar_O(A,W)
> # run logistic regression of Y on H.AW using the logit of the esimates as offset
>
> logitUpdate<- glm(ObsData$Y ~ -1 +offset(qlogis(QbarAW)) + H.AW, family='binomial')
> epsilon <- logitUpdate$coef
> epsilon
H.AW
0.01254328
> # obtain the targeted estimates
> @barAW.star<- plogis(qlogis(QbarAW)+ epsilon*H.AW)
> @barlW.star<- plogis(qlogis(QbariW)+ epsilon*H.1W)
> @barOW.star<- plogis(qlogis(QbarOW)+ epsilon*H.OW)

A\

# since the clever cov is not changing, updating will not have any effect
> coef(glm(ObsData$Y ~ -1 +offset(qlogis(QbarAW.star)) + H.AW, family=binomial))

H.AW
2.738074e-17

> # 6. Estimate Psi(P_0) as the empirical mean of the difference in the targeted
# outcomes under A=1 and A=0
> PsiHat.TMLE<- mean(QbarlW.star - QbarOW.star)

v
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> # comparing the estimates...
> c(PsiHat.SS, PsiHat.IPTW, PsiHat.TMLE)

[1] -0.07844085 -0.08494535 -0.06638246

The point estimate from the simple substitution estimator, using Super Learner for Qo(A, W), was -7.8%.
The point estimate from IPTW, using Super Learner for go(A|W), was -8.5%. The point estimate from
TMLE was -6.6%. The true value of the statistical estimand was -6.2%. To evaluate the performance of
these estimators (e.g. bias and variance), we would draw another independent sample of size n, implement
the 3 estimators (with the same Super Learner library), and repeat 500 or so times.

5 The basics of the 1tmle package

The 1tmle package expands the previous tmle package. The 1tmle package estimates parameters corresponding
to point-treatment exposures, longitudinal exposures, marginal structural working models, dynamic treatment
regimes, and much more!

1. Load the SuperLearner and ltmle packages.

> library('SuperLearner')

> library('ltmle')

> # we can learn a lot more about the function by reading the help file
> ?ltmle

e The basic input to the function is the dataset data, the exposure variable(s) Anodes, the outcome(s)
Ynodes, and the exposure levels of interest abar.

e The user can also specify censoring variables Cnodes, time-dependent covariates Lnodes, weights
observation.weights, and the independent unit id. (See the help file for more information.)

e Initial estimates of the conditional mean outcome Q(A, W) can be estimated according to a user-
specified regression formula (Qform) or estimated with Super Learner (SL.1library).

e Initial estimates of the propensity score go(A = 1|W) can be estimated according to a user-specified
regression formula (gform) or estimated with Super Learner (SL.1library).

2. Call the ltmle function using Super Learner to estimate the conditional mean outcome
Qo(A, W) and the exposure mechanism go(A = 1|W). Use the summary function to obtain point
estimates and get inference.

> ltmle.SL<- ltmle(data=0ObsData, Anodes='A', Ynodes='Y', abar=1ist(1,0),
+ SL.library=SL.library)
> summary(1tmle.SL)

Here, abar=1ist (1,0) specifies the comparison of interest: all exposed (A = 1) vs. all unexposed (A = 0).
3. Use the 1tmle package to explore performance under model mis-specification

(a) Using main terms parametric regression

> Iltmle.parametric<- ltmle(data=0bsData, Anodes='A', Ynodes='Y', abar=1ist(1,0),
+ Qform=c (Y="Q.kplusl ~ A+W1+W2+W3+W4"), gform="A~W1+W2+W3+W4")
> summary(ltmle.parametric)

(b) Using unadjusted estimators
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# adding a dummy variable to observed data

ObsData<- data.frame(U=1, ObsData)

ltmle.unadj <- ltmle(data=0bsData, Anodes='A', Ynodes='Y', abar=1ist(1,0),
Qform=c (Y="Q.kplusl ~ A"), gform="A"U")

summary (1tmle.unadj)

vV + Vv Vv Vv

4. Use the 1tmle package to explore double robustness.

12

Solution:

>

> # 0. Re-loading the observed data for the workshop & resetting the seed
>

> ObsData<- read.csv("RLab5.TMLE.csv")

> set.seed(252)

library("SuperLearner")
library("ltmle")

vV V. Vv Vv VvV
$*

> 7ltmle

> o

> # 2. call ltmle with Super Learner (same libraries)
e

> Iltmle.SL<- ltmle(data=0ObsData, Anodes='A', Ynodes='Y', abar=1ist(1,0),
+ SL.library=SL.library)

> summary(1tmle.SL)

Estimator: tmle

Call:

ltmle(data = ObsData, Anodes = "A", Ynodes = "Y", abar = list(1,
0), SL.library = SL.library)

Treatment Estimate:
Parameter Estimate: 0.24379
Estimated Std Err: 0.0087318
p-value: <2e-16
95% Conf Interval: (0.22668, 0.2609)

Control Estimate:
Parameter Estimate: 0.31021
Estimated Std Err: 0.007714
p-value: <2e-16
95% Conf Interval: (0.29509, 0.32533)

Additive Treatment Effect:
Parameter Estimate: -0.06642
Estimated Std Err: 0.0080769
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p-value: <2e-16
95% Conf Interval: (-0.08225, -0.050589)

The point estimates from 1ltmle package might differ from our code for several reasons. First, the 1tmle
package uses a two-dimensional clever covariate in updating step. This allows us to obtain estimates and
inference for - under the identifiability assumptions - the expected outcome under the exposure Ey x (Y1),
expected outcome under the control Ey x (Yp), average treatment effect Ey x (Y7 — Yp). If the outcome is
binary, the package will also return estimates of the risk ratio and odds ratio. (See Examplel in the help file.)
In our code, we used a one-dimensional clever covariate for simplicity and to focus on the G-computation
formula (equal to the average treatment effect). Second, the 1tmle package incorporate the clever covariates
in the weights (as opposed to covariates in the fluctuation model.) Third, the 1tmle package bounds the
estimated propensity scores. This bounding is included to deal with theoretical and practical positivity
violations. Finally, the Super Learner algorithm could split the data into different folds. (This is why we
reset the seed.)

ltmle.parametric<- ltmle(data=0bsData, Anodes='A', Ynodes='Y', abar=1ist(1,0),
Qform=c (Y="Q.kplusl ~ A+W1+W2+W3+W4"), gform="A"W1+W2+W3+W4")
summary (1tmle.parametric)

vV + VvV Vv VvV
H*

Estimator: tmle

Call:

ltmle(data = ObsData, Anodes = "A", Ynodes = "Y", Qform = c(Y = "Q.kplusl ~ A+W1+W2+W3+W4"
gform = "ATW1+W2+W3+W4", abar = list(1, 0))

Treatment Estimate:
Parameter Estimate: 0.18893
Estimated Std Err: 0.012821
p-value: <2e-16
95% Conf Interval: (0.1638, 0.21406)

Control Estimate:
Parameter Estimate: 0.33387
Estimated Std Err: 0.0083281
p-value: <2e-16
95% Conf Interval: (0.31755, 0.35019)

Additive Treatment Effect:
Parameter Estimate: -0.14494
Estimated Std Err: 0.015209
p-value: <2e-16
95% Conf Interval: (-0.17475, -0.11513)

> -

> # 3b. call ltmle with unadjusted

> # adding a dummy variable to observed data

> e

> ObsData<- data.frame(U=1, ObsData)

> Itmle.unadj <- ltmle(data=ObsData, Anodes='A', Ynodes='Y', abar=1ist(1,0),
+ Qform=c (Y="Q.kplusl ~ A"), gform="A~U")

> summary(1ltmle.unadj)




95% Conf Interval:

Control Estimate:

(0.16342, 0.21212)
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Estimator: tmle
Call:
ltmle(data = ObsData, Anodes = "A", Ynodes = "Y", Qform = c(Y = "Q.kplusl ~ A"),
gform = "A~U", abar = list(1l, 0))
Treatment Estimate:
Parameter Estimate: 0.18777
Estimated Std Err: 0.012423
p-value: <2e-16

Parameter Estimate: 0.33554
Estimated Std Err: 0.0083973
p-value: <2e-16

95% Conf Interval: (0.31909, 0.352)

Additive Treatment Effect:

Parameter Estimate: -0.14777
Estimated Std Err: 0.014995
p-value: <2e-16

95% Conf Interval: (-0.17716, -0.11839)

>
> # 4a. explore double robustness using misspecified regression for QbarAW
> -

> ltmle.DR<- ltmle(data=0ObsData, Anodes='A', Ynodes='Y', abar=1ist(1,0),

+ SL.library=SL.library,

+ Qform=c (Y="Q.kplusl ~ A"))

> summary(1tmle.DR)

Estimator: tmle

Call:

ltmle(data = ObsData, Anodes = "A", Ynodes = "Y", Qform = c(Y = "Q.kplusl ~ A"),
abar = 1list(1, 0), SL.library = SL.library)

Treatment Estimate:

Parameter Estimate: 0.23599
Estimated Std Err: 0.012911
p-value: <2e-16

95% Conf Interval: (0.21068, 0.26129)

Control Estimate:

Parameter Estimate: 0.31763
Estimated Std Err: 0.0087212
p-value: <2e-16

95% Conf Interval: (0.30054, 0.33473)

Additive Treatment Effect:

Parameter Estimate: -0.081647
Estimated Std Err: 0.015581
p-value: 1.6028e-07

95% Conf Interval: (-0.11218, -0.05111)
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>
> # 4b. explore double robustness using misspecified regression for gAW
>

> 1tmle.DRb<- ltmle(data=0bsData, Anodes='A', Ynodes='Y', abar=1ist(1,0),
+ SL.library=SL.library,

+ gform="A"U")

> summary (1tmle.DRb)

Estimator: tmle

Call:

ltmle(data = ObsData, Anodes = "A", Ynodes = "Y", gform = "A"U",
abar = 1list(1, 0), SL.library = SL.library)

Treatment Estimate:
Parameter Estimate: 0.23462
Estimated Std Err: 0.0080797
p-value: <2e-16
95% Conf Interval: (0.21879, 0.25046)

Control Estimate:
Parameter Estimate: 0.31307
Estimated Std Err: 0.0077779
p-value: <2e-16
95% Conf Interval: (0.29783, 0.32831)

Additive Treatment Effect:
Parameter Estimate: -0.078446
Estimated Std Err: 0.0075134
p-value: <2e-16
95% Conf Interval: (-0.093172, -0.06372)

Formally, an estimator is consistent if the point estimates converge (in probability) to the estimand as
sample size n — oo. This is an asymptotic property. Here, we only have one sample of size n = 1, 000.
To evaluate the consistency of TMLE, we would need to do multiple runs at increasing samples sizes, e.g.
n = 500, n = 5,000, n = 50,000, n = 500, 000.

Solution:

Appendix: A specific data generating process

The following code was used to generate the data set RLab5.TMLE. csv. In this data generating process (one
of many compatible with the SCM M), all exogenous errors are independent.

> library('MASS')

> # generateData - function to generate the data
> # input: number of draws, whether or not there is a treatment effect
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> # output: observed data + counterfactuals
> generateData<- function(n, effect=T){

+

Wi <- rbinom(n, size=1, prob=0.5)

W2<- runif(n, min=0, max=1)

# W3 and W4 are drawn from a multivariate normal (i.e. correlated)
s=1

Sigma<- matrix(0.85*%s*s, nrow=2, ncol=2)

diag(Sigma)<- s°2

Z<- mvrnorm(n, rep(0,2), Sigma)

w3<- Z[,1]; Wwé4<- Z[,2];

# generate the propensity score P(A=1|W)
pscore<- plogis(-1.25 - .256%(W1+W2) +.5*W3*W4)

A<- rbinom(n, size=1, prob= pscore)

U.Y<- rnorm(n, 0, s)
# generate the counterfactual outcome with A=0
Y.0<- generateY(Wi=W1, W2=W2, W3=W3, W4=W4, A=0, U.Y=U.Y)

if(leffect){ # if there is no effect, the counterfactual under txt =
# the counterfactual under the control
Y.1<- Y.0

}else{ # otherwise, generated the counterfactual outcome with A=1
Y.1<- generateY(Wi=W1, W2=W2, W3=W3, W4=W4, A=1, U.Y=U.Y)

}

# assign the observed outcome based on the observed exposure
Y<- rep(NA, n)

Y[A==1]<- Y.1[A==1]

Y[A==0]<- Y.0[A==0]

data<- data.frame(W1, W2, W3, W4, A, Y, Y.1, Y.0)
data

# generateY: function to generate the outcome given the
#  baseline covariates, exposure and background error U.Y

generateY<- function(Wi, W2, W3, W4, A, U.Y){
Wi*plogis(0.25 +.5%W2 -1%W4 -0.5*%A -2*W4*W4 -.5*W4*A + .25+U.Y) +
(1-W1)*plogis (.25 ~—.5*W2 -1#W3 -0.5%A -2+W3*W3 -.5*W3*A - .25+U.Y)

+ + +VVVVV 4+ ++++++++++++++++++++F++++F++++F++++

set.seed (1)

FullData<- generateData(n=1000, effect= T)

# remove unobservable counterfactuals

ObsData<- subset(FullData, select=c(W1,W2,W3,W4, A, Y) )

V VVVVVYyV
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> write.csv(ObsData, file="RLab5.TMLE.csv", row.names=F)

We could obtain the true value of the causal parameter W7 (P; x) by drawing a huge number of obser-
vations and taking the difference in the means of the counterfactual outcomes.

set.seed(252)

TrueData<- generateData(n=100000)

# Simply take the difference in mean the counterfactuals
Psi.F<- mean(TrueData$Y.1 - TrueData$Y.0)

Psi.F

V VvV Vv VvV

[1] -0.06235098

The average treatment effect U7 (Py ) is -6.2%. The expected injury severity would be 6.2% lower if all
subjects had prior Dinosaur experience than if none were experienced.




