
Lecture 12

TMLE Examples, Interpretation, 
Wrap-up
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Outline

1. TMLE: Some examples
– Simulated HIV data
– Real Observational data
– Real data from RCTs

2. Various approaches to interpreting results
3. Wrap up and frontiers
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Ex: Impact of a Prevention Intervention 
on HIV Incidence (Simulated Data)

100 communities- differ
in HIV risk factors
• HIV prevalence
• Circumcision prevalence
• Trading center present

Prevention package 
non-randomly assigned

Community level 
outcome: 
3 year HIV Incidence



The Roadmap in Action

1. Causal model
W: Baseline HIV Risk Factors
• HIV prevalence
• Circumcision prevalence
• Trading center present

A: HIV Prevention 
Package

Y: 3 Year HIV 
Cumulative Incidence

U
U

U



The Roadmap in Action

2. Causal Question
• Target Causal Parameter: Average treatment 

effect
• Difference between average counterfactual 3 

year HIV incidence if all communities had 
received the prevention package versus all 
communities had not received the prevention 
package

• E(Y1)-E(Y0) 



The Roadmap in Action

3. Observed Data
• 100 randomly sampled communities 
• On each we measure:
• W: Baseline confounders
• A: receipt of the prevention package
• Y: 3 year cumulative incidence 

• Observe 100 independent and identically 
distributed copies of O=(W,A,Y)



The Roadmap in Action
4. Identification
• Do we know enough to translate our causal 

question to a statistical question? 

W: Baseline HIV Risk Factors

A: HIV Prevention 
Package

Y: 3 Year HIV 
Cumulative Incidence

U U

U



The Roadmap in Action
4. Identification
• Do we know enough to translate our causal 

question to a statistical question? 

W: Baseline HIV Risk Factors

A: HIV Prevention 
Package

Y: 3 Year HIV 
Cumulative Incidence

U U

U

NO



The Roadmap in Action
4. Identification: Convenience Assumptions
• Under what additional assumptions can we 

translate our causal question to a statistical 
question? 

W: Baseline HIV Risk Factors

A: HIV Prevention 
Package

Y: 3 Year HIV 
Cumulative Incidence

U U

U

No unmeasured confounding



The Roadmap in Action

5. Statistical Model and Estimand
1. Statistical model
– Absent any other knowledge,  observed data 

O=(W,A,Y) might have any distribution
– Non-parametric statistical model

2. Statistical quantity to estimate (estimand)
– Under our causal model + assumptions, average 

treatment effect = observed difference in mean 
outcome within confounder strata, standardized 
to distribution of confounders

E(Y1 −Y0 ) = E(Y | A =1,W = w)−E(Y | A = 0,W = w)P(W = w)
w
∑



The Roadmap in Action

• 6. Estimation
• Choosing an estimator is a statistical problem
– For a given model and estimand, many choices 
– One estimator is not “more causal” than another

• Estimators do have important differences in 
their statistical properties
– Even for point treatment settings



Double Robustness: Simulated Example
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Double Robustness: Simulated Example

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Re
la

tiv
e 

Bi
as

 (2
.5

th
, 9

7.
5th

Q
ua

nt
ile

s)

Outcome Regression Misspecified

Propensity Score Misspecified

TMLE Outcome 
Regression

IPTW



• SEARCH HIV Prevention Trial
– www.searchendaids.com
– 89% baseline population testing coverage

• Determinants of baseline HIV testing uptake?
– Without causal assumptions: adjusted predictors

• Many covariates: Region, age, gender, 
occupation, marital, education, wealth, mobility

• Parametric regression… how to specify?
– Logistic? Poisson? Which variables? Which 

interactions?
Chamie et al, Lancet HIV, 2016



Does it matter in practice?

• Not always, but sometimes
– Estimates from standard approach and TMLE 

sometimes very similar
– But sometimes, estimates and inference can 

change

• Example: HIV testing uptake in SEARCH Trial
– Goal: estimate the relative risk of not testing, 

adjusting for other covariates
1. Poisson regression 
2. TMLE



Ex. HIV Testing Uptake in SEARCH
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Poisson regression TMLE

TMLE: RR: 0.84 (95% CI 0.80,0.89)
• Adults with a primary education more likely to test than those with 

less than a primary education
Poisson: RR: 0.99 (95% CI 0.94, 1.05) 
• No difference



TMLE for RCTs
• Do corticosteroids reduce mortality for adults 

with septic shock?
– 35 randomized trials, ~5000 patients: still no answer

Pirracchio 2016

Pooled TMLE

Pooled Poisson

Previous Meta

0.8 0.9 1.0 1.1
Relative Risk for mortality

Previous Meta-Analysis of 35 trials:  
No significant benefit 

Pooled analysis of 3 major RCTs 
(1300 patients) with standard 
methods: No significant benefit 

Pooled analysis of 3 major RCTs 
using Targeted Learning: 
Significant reduction in mortality



Not just is there an effect, 
but for whom?

• In Sepsis re-analysis: Targeted Learning showed 
all benefit occurred in a key subgroup
– Heterogeneity in patient populations one cause of 

inconsistent results

Responders

Non−Responders

Overall

0.8 1.0 1.2
Relative Risk for mortality

Effect Heterogeneity 
by Response to ACTH 
Stimulation 

Pirracchio 2016



Interpretation

1. Various approaches to interpreting results
2. Wrap up and frontiers
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Back to the Roadmap
1. Specify Causal Model representing real

background knowledge 
2. Specify Causal Question  
3. Specify Observed Data and link to causal model
4. Identify : Knowledge + data sufficient?
5. Commit to an estimand as close to question as 

possible, and a statistical model representing 
real knowledge. 

6. Estimate 
7. Interpret Results
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A Hierarchy of Interpretations

21Petersen and van der Laan, Epidemiology 2014 



Example: Abacavir and Cardiovascular 
Disease

• Analysis of observational data from several 
cohorts suggested abacavir use associated 
with increased risk of myocardial infarction 
among treated HIV-infected population
– Other analyses found no evidence of such an 

association….
• Example of a causal question: Does use of 

abacavir (ABC) increase risk of myocardial 
infarction (MI)?
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Example: Abacavir and Cardiovascular 
Disease, point treatment version

A=Use Abacavir Y= MI

UYUA
W=age, sex, 
lipids

UW

• X=O=(W,A,Y)
– W= baseline covariates (age, sex, lipid profile) measured at start of 

ART
– A= Indicator First ART Regimen contains Abacavir
– Y= Myocardial Infarction by year 5

• Target Causal Parameter: EU,X(Y1-Y0)

Ψ(P0 ) = E0 (Y | A =1,W = w)− E0 (Y | A = 0,W = w)P0 (W = w)
w
∑

Ψ̂(Pn ) = 0.02 (95% CI: 0.01,0.03) 23



Statistical Interpretation
• An estimate of our statistical target parameter
– Ex: Difference in probability of developing MI by 

year 5 among subjects with identical age, sex, and 
lipids who started ART with vs. without Abacavir, 
standardized to the age, sex and lipid distribution 
of the whole population

• Quality of the estimate depends on
– Whether statistical model contains the truth
– Sample size/ data support for the estimand
– Estimator

24



Counterfactual Interpretation
• Change in (some aspect of) the outcome 

distribution under hypothetical modification to 
conditions under which data were generated
– Ex. Difference in counterfactual probability of MI by 

year 5 under under hypothetical intervention in which 
whole population started an ART regimen with 
abacavir versus if no one did

• Moving from statistical to counterfactual 
interpretation requires that untestable 
identifiability assumptions hold
– Ex. Under the assumption that age, sex, and lipids 

satisfy the backdoor criteria (ie are sufficient to adjust 
for confounding)
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Real World Interpretation
• What would we see if an intervention were 

implemented in the real world?
• Moving from counterfactual to real world 

interpretation requires
– Same intervention 

• or “Treatment variation irrelevance”   (eg vanderWeele)
– Same data generating process

• Relaxing this: Transportability (eg Pearl, Bareinboim)
– Ex: Same use of other drugs in the regimen, how the 

assignment occurs (ie. via a policy vs. patient/provider 
preference) doesn’t change the effect…
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RCT Interpretation

• What would we see if an intervention were 
evaluated in a randomized trial
– Ex: Subjects starting ART were randomly assigned 

to regimen with versus without abacavir
• Moving from real world to RCT interpretation 

requires
– Effective randomization 
– Perfect compliance
– Perfect follow up
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Interpreting Results: Take Home Points

• Always have a statistical interpretation
– If your statistical model contains the truth, you 

have enough support in your data, and you 
choose a good estimator

• How far to go beyond this is up to 
you/reader/policy maker

• Should be based on a frank evaluation of the 
plausibility of the assumptions required
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1. Causal
Model

• SCM

3. Data
• O=(W,A,Y)

2. Question
• ATE
• MSM

5. Statistical 
Model
• Non-Parametric

4. Identified?
5. Estimand
• G-comp formula
• Projection onto 

working MSM

Convenience 
assumptions

6. Estimator
• SS (+SL)
• IPTW (+SL)
• TMLE (+SL)

7. Interpretation

What have we accomplished?

Y

N
• Backdoor 

Criteria
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This is just the beginning…
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• We have focused on SCM of Pearl
• Other formal Casual frameworks 
– “Neyman-Rubin” Potential Outcome
– Dawid: Decision Theoretic
– Robins & Richardson: Minimal Causal Model
– Etc…
– Differ in extent and type of non testable 

assumptions, assumptions about the nature of 
causality, etc…

1. Specify a Casual Model 
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2. Specify Causal Question

• We have focused on using counterfactuals to 
define

1. “Point treatment effects”: Static intervention on a 
single variable

2. ATE and parameters defined using a (working) MSM
• LOTS more options
– Interventions on multiple nodes
– Dynamic (ie personalized or adaptive) interventions
– Mediation
– Etc…
– Review: Petersen & van der Laan Epidemiology 2014
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3. Specify observed data and its link to 

the casual model

• We have focused on independent random 

samples: n i.i.d. copies of O=(W,A,Y)~P0

• Lots of more complex data structures and links

– Hierarchical data

– Longitudinal data, Missingness

– Case control sampling

– “Adaptive randomization”

– Etc…

33



4. Identify
• We have focused on the Back-door criteria/ 

Randomization assumption
• Many more identifiability results
– Ex. Front door criteria, Instrumental variables
– Ex. Sequential back door criteria for multiple 

intervention nodes
– Etc.

• Causal frameworks provide a tool for 
developing these-> new statistical estimand 
that under specific assumptions give us a 
wished for causal quantity

34



5. Commit to a Statistical Model and 
Estimand (Target parameter of the 

observed data distribution)

• We have focused on a non-parametric 
statistical model for P0

• If your have real model knowledge, by all 
means use it
– Straightforward to incorporate in SCM
– Ex: You know something about how the exposure 

was assigned

• Statistical model should contain the truth
35



6. Estimate 

• We have focused on three estimators

– Simple (or non-targeted) substitution estimator

– Inverse probability of treatment weighted estimator

– TMLE 

– Inference based on NP- bootstrap or IC

• Each of these requires doing a good job estimating 

some part of the observed data distribution well

– E0(Y|A,W), g0(A|W), or both

– We focused on data adaptive methods (and in particular 

Super Learning) to help ensure this 

• Other estimators for same quantity exist

– Ex. Propensity score matching, using the estimated 

propensity score as a dimension reduction…
36



7. Interpret.

• My perspective: A target causal parameter 
need not correspond to feasible randomized 
experiment, or hypothetical intervention in 
order to be of interest

• There is lots of debate on this topic! Decide 
for yourself….
– See Petersen & van der Laan Epidemiology 2014 

for a brief review and some key references to get 
started
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Formal Causal Frameworks provide a 
very general toolbox to…

1. Represent background knowledge and 
uncertainty more accurately

2. Frame sharper questions
3. Evaluate/improve plausibility of assumptions
4. Optimize analysis to give best possible answer to 

motivating question
5. More accurately evaluate uncertainty/make 

better inferences
Use your tools well!
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