Lecture 12

TMLE Examples, Interpretation, Wrap-up

Outline

- 1. TMLE: Some examples
 - Simulated HIV data
 - Real Observational data
 - Real data from RCTs
- 2. Various approaches to interpreting results
- 3. Wrap up and frontiers

Ex: Impact of a Prevention Intervention on HIV Incidence (Simulated Data)

1. Causal model

2. Causal Question

- Target Causal Parameter: Average treatment effect
- Difference between average counterfactual 3
 year HIV incidence if all communities had
 received the prevention package versus all
 communities had not received the prevention
 package
- E(Y₁)-E(Y₀)

3. Observed Data

- 100 randomly sampled communities
- On each we measure:
 - W: Baseline confounders
 - A: receipt of the prevention package
 - Y: 3 year cumulative incidence
- Observe 100 independent and identically distributed copies of O=(W,A,Y)

4. Identification

 Do we know enough to translate our causal question to a statistical question?

4. Identification

 Do we know enough to translate our causal question to a statistical question?

4. Identification: Convenience Assumptions

 Under what additional assumptions can we translate our causal question to a statistical question?

5. Statistical Model and Estimand

- 1. Statistical model
 - Absent any other knowledge, observed data
 O=(W,A,Y) might have any distribution
 - Non-parametric statistical model
- 2. Statistical quantity to estimate (estimand)
 - Under our causal model + assumptions, average treatment effect = observed difference in mean outcome within confounder strata, standardized to distribution of confounders

$$E(Y_1 - Y_0) = \sum_{w} E(Y \mid A = 1, W = w) - E(Y \mid A = 0, W = w)P(W = w)$$

- 6. Estimation
- Choosing an estimator is a statistical problem
 - For a given model and estimand, many choices
 - One estimator is not "more causal" than another
- Estimators do have important differences in their statistical properties
 - Even for point treatment settings

Double Robustness: Simulated Example

Double Robustness: Simulated Example

A hybrid mobile approach for population-wide HIV testing in rural east Africa: an observational study

Gabriel Chamie, Tamara D Clark, Jane Kabami, Kevin Kadede, Emmanuel Ssemmondo, Rachel Steinfeld, Geoff Lavoy, Dalsone Kwarisiima, Norton Sang, Vivek Jain, Harsha Thirumurthy, Teri Liegler, Laura B Balzer, Maya L Petersen, Craig R Cohen, Elizabeth A Bukusi, Moses R Kamya, Diane V Havlir, Edwin D Charlebois

- SEARCH HIV Prevention Trial
 - www.searchendaids.com
 - 89% baseline population testing coverage
- Determinants of baseline HIV testing uptake?
 - Without causal assumptions: adjusted predictors
- Many covariates: Region, age, gender, occupation, marital, education, wealth, mobility
- Parametric regression... how to specify?
 - Logistic? Poisson? Which variables? Which interactions?

IN COMMUNITY HEALTH

Does it matter in practice?

- Not always, but sometimes
 - Estimates from standard approach and TMLE sometimes very similar
 - But sometimes, estimates and inference can change
- Example: HIV testing uptake in SEARCH Trial
 - Goal: estimate the relative risk of not testing, adjusting for other covariates
 - 1. Poisson regression
 - 2. TMLE

Ex. HIV Testing Uptake in SEARCH

 Adults with a primary education more likely to test than those with less than a primary education

Poisson: RR: 0.99 (95% CI 0.94, 1.05)

No difference

TMLE for RCTs

- Do corticosteroids reduce mortality for adults with septic shock?
 - 35 randomized trials, ~5000 patients: <u>still no answer</u>

Previous Meta-Analysis of 35 trials: **No significant benefit**

Pooled analysis of 3 major RCTs (1300 patients) with standard methods: **No significant benefit**

Pooled analysis of 3 major RCTs using **Targeted Learning**: **Significant reduction in mortality**

Not just is there an effect, but for whom?

- In Sepsis re-analysis: Targeted Learning showed all benefit occurred in a key subgroup
 - Heterogeneity in patient populations one cause of inconsistent results

Effect Heterogeneity by Response to ACTH Stimulation

Interpretation

- 1. Various approaches to interpreting results
- 2. Wrap up and frontiers

Back to the Roadmap

- 1. Specify **Causal Model** representing <u>real</u> background knowledge
- 2. Specify Causal Question
- 3. Specify Observed Data and link to causal model
- 4. Identify: Knowledge + data sufficient?
- Commit to an **estimand** as close to question as possible, and a **statistical model** representing <u>real</u> knowledge.
- 6. Estimate
- 7. Interpret Results

A Hierarchy of Interpretations

Example: Abacavir and Cardiovascular Disease

- Analysis of observational data from several cohorts suggested abacavir use associated with increased risk of myocardial infarction among treated HIV-infected population
 - Other analyses found no evidence of such an association....
- Example of a causal question: Does use of abacavir (ABC) increase risk of myocardial infarction (MI)?

Example: Abacavir and Cardiovascular Disease, point treatment version

- X=O=(W,A,Y)
 - W= baseline covariates (age, sex, lipid profile) measured at start of ART
 - A= Indicator First ART Regimen contains Abacavir
 - Y= Myocardial Infarction by year 5

Target Causal Parameter: E_{U,X}(Y₁-Y₀)

$$\Psi(P_0) = \sum_{w} E_0(Y \mid A = 1, W = w) - E_0(Y \mid A = 0, W = w)P_0(W = w)$$

$$\hat{\Psi}(P_n) = 0.02 \ (95\% \ \text{CI}: 0.01, 0.03)$$

Statistical Interpretation

- An estimate of our statistical target parameter
 - Ex: Difference in probability of developing MI by year 5 among subjects with identical age, sex, and lipids who started ART with vs. without Abacavir, standardized to the age, sex and lipid distribution of the whole population
- Quality of the estimate depends on
 - Whether statistical model contains the truth
 - Sample size/ data support for the estimand
 - Estimator

Counterfactual Interpretation

- Change in (some aspect of) the outcome distribution under hypothetical modification to conditions under which data were generated
 - Ex. Difference in counterfactual probability of MI by year 5 under under hypothetical intervention in which whole population started an ART regimen with abacavir versus if no one did
- Moving from statistical to counterfactual interpretation requires that untestable identifiability assumptions hold
 - Ex. Under the assumption that age, sex, and lipids satisfy the backdoor criteria (ie are sufficient to adjust for confounding)

Real World Interpretation

- What would we see if an intervention were implemented in the real world?
- Moving from counterfactual to real world interpretation requires
 - Same intervention
 - or "Treatment variation irrelevance" (eg vanderWeele)
 - Same data generating process
 - Relaxing this: Transportability (eg Pearl, Bareinboim)
 - Ex: Same use of other drugs in the regimen, how the assignment occurs (ie. via a policy vs. patient/provider preference) doesn't change the effect...

RCT Interpretation

- What would we see if an intervention were evaluated in a randomized trial
 - Ex: Subjects starting ART were randomly assigned to regimen with versus without abacavir
- Moving from real world to RCT interpretation requires
 - Effective randomization
 - Perfect compliance
 - Perfect follow up

Interpreting Results: Take Home Points

- Always have a statistical interpretation
 - If your statistical model contains the truth, you have enough support in your data, and you choose a good estimator
- How far to go beyond this is up to you/reader/policy maker
- Should be based on a frank evaluation of the plausibility of the assumptions required

What have we accomplished?

This is just the beginning...

1. Specify a Casual Model

- We have focused on SCM of Pearl
- Other formal Casual frameworks
 - "Neyman-Rubin" Potential Outcome
 - Dawid: Decision Theoretic
 - Robins & Richardson: Minimal Causal Model
 - Etc...
 - Differ in extent and type of non testable assumptions, assumptions about the nature of causality, etc...

2. Specify Causal Question

- We have focused on using counterfactuals to define
 - 1. "Point treatment effects": Static intervention on a single variable
 - 2. ATE and parameters defined using a (working) MSM
- LOTS more options
 - Interventions on multiple nodes
 - Dynamic (ie personalized or adaptive) interventions
 - Mediation
 - Etc...
 - Review: Petersen & van der Laan Epidemiology 2014

3. Specify observed data and its link to the casual model

- We have focused on independent random samples: n i.i.d. copies of O=(W,A,Y)~P₀
- Lots of more complex data structures and links
 - Hierarchical data
 - Longitudinal data, Missingness
 - Case control sampling
 - "Adaptive randomization"
 - Etc...

4. Identify

- We have focused on the Back-door criteria/ Randomization assumption
- Many more identifiability results
 - Ex. Front door criteria, Instrumental variables
 - Ex. Sequential back door criteria for multiple intervention nodes
 - Etc.
- Causal frameworks provide a tool for developing these-> new statistical estimand that under specific assumptions give us a wished for causal quantity

5. Commit to a Statistical Model and Estimand (Target parameter of the observed data distribution)

- We have focused on a non-parametric statistical model for P₀
- If your have real model knowledge, by all means use it
 - Straightforward to incorporate in SCM
 - Ex: You know something about how the exposure was assigned
- Statistical model should contain the truth

6. Estimate

- We have focused on three estimators
 - Simple (or non-targeted) substitution estimator
 - Inverse probability of treatment weighted estimator
 - TMLE
 - Inference based on NP- bootstrap or IC
- Each of these requires doing a good job estimating some part of the observed data distribution well
 - $E_0(Y|A,W)$, $g_0(A|W)$, or both
 - We focused on data adaptive methods (and in particular Super Learning) to help ensure this
- Other estimators for same quantity exist
 - Ex. Propensity score matching, using the estimated propensity score as a dimension reduction...

7. Interpret.

- My perspective: A target causal parameter need not correspond to feasible randomized experiment, or hypothetical intervention in order to be of interest
- There is lots of debate on this topic! Decide for yourself....
 - See Petersen & van der Laan Epidemiology 2014 for a brief review and some key references to get started

Formal Causal Frameworks provide a very general toolbox to...

- 1. Represent background knowledge and uncertainty more accurately
- 2. Frame sharper questions
- 3. Evaluate/improve plausibility of assumptions
- 4. Optimize analysis to give best possible answer to motivating question
- 5. More accurately evaluate uncertainty/make better inferences

Use your tools well!