
Lecture 11: TMLE
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Outline
• Intro to TMLE:
– Properties
– Implementation: TMLE for ATE estimand

• Some background on TMLE
– Estimating Equations
– Estimating Equations and influence curves
– Efficient influence curve
– TMLE solves estimating equation corresponding to 

efficient IC
• A-IPW: DR efficient estimating equation-based 

estimator
• TMLE in practice…
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• TLB. Chapters 4-6
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The Roadmap
1. Specify Causal Model representing real

background knowledge 
2. Specify Causal Question  
3. Specify Observed Data and link to causal model
4. Identify : Knowledge + data sufficient?
5. Commit to an estimand as close to question as 

possible, and a statistical model representing 
real knowledge. 

6. Estimate 
7. Interpret Results
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Estimate the Chosen Parameter of the 
Observed Data Distribution

• For illustration we are focusing primarily  on a 
single statistical estimation problem
– O=(W,A,Y)~P0

• Statistical model is non- or semi-parametric
– Ψ(P0)=EW,0(E0(Y|A=1,W)-E0(Y|A=1,W))

• If W satisfies backdoor criteria, equal to the ATE

• Focusing on three classes of estimator 
– Simple substitution (G-comp)
– IPTW
– Today: Double Robust- Specifically, AIPW and TMLE
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Overview of Estimators
• Each class of estimator requires for its 

implementation an estimator of a distinct 
factor of the observed data distribution

• Distribution of the observed data:
• P0(O)=P0(W,A,Y) = P0(W) P0(A|W) P0(Y|A,W) 
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Different Estimators require estimators 
of distinct factors of the observed data 

distribution
• P0(O)=P0(W,A,Y)=P0(W)P0(A|W) P0(Y|A,W)

• Simple substitution estimators
– Also referred to as “G-computation” estimators
– Actually, rather than full P0(Y|A,W), only require 

estimators of E0 (Y|A,W) (and P0(W))

• Consistency depends on consistent estimation 
of E0 (Y|A,W)
– Super Learning can help here, but… 7



IPTW Estimators

• P0(O)=P0(W,A,Y)=P0(W)P0(A|W) P0(Y|A,W)

• Consistency of IPTW estimators depends on 
consistent estimation of g0 (A|W)=P0(A|W)
– Super learning can help here, but….

Inverse probability weighted estimators
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Coming next: Double Robust 
Estimators

• P0(O)=P0(W,A,Y)=P0(Y|A,W) P0(A|W) P0(W)

• These asymptotic properties typically translate 
into lower bias and variance in finite samples

• Can integrate machine learning and still 
maintain valid statistical inference
–Meaningful CIs and p values

Double Robust estimators: 
- A-IPTW
- TMLE
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Coming next: Double Robust 

Estimators

• P0(O)=P0(W,A,Y)=P0(Y|A,W) P0(A|W) P0(W)

• Implementation requires estimators of both 

E0(Y|A,W) and g0 (A|W)

• Consistent if either E0 (Y|A,W) or g0 (A|W) are 
estimated consistently

Double Robust estimators: 

- A-IPTW

- TMLE
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Coming next: Double Robust 
Estimators

• P0(O)=P0(W,A,Y)=P0(Y|A,W) P0(A|W) P0(W)

• If both E0 (Y|A,W) and g0 (A|W) are estimated 
consistently (at rates faster than n-1/4) then these 
estimators are efficient
– Lowest asymptotic variance of any reasonable 

estimator
– In semiparametric (or non-parametric) statistical 

model that makes assumptions, if any, only on 
P0(A|W)

Double Robust estimators: 
- A-IPTW
- TMLE

11



Targeted Maximum Likelihood 
Estimation

• TMLE is a general methodology
• As with other estimators, we will focus on 

estimation of the “G comp estimand” 
corresponding under causal assumptions to 
the ATE:
Ψ(P0)=EW,0(E0(Y|A=1,W)-E0(Y|A=0,W))
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General Overview: TMLE
1. Estimate the portion of P0 that the target 

parameter is a function of (i.e., estimate Q0)
– Ψ(P0)=Ψ(Q0)

• What is Q0 for the G-comp estimand?
• How could you estimate it?
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General Overview: TMLE
2. Update initial estimator of Q0 to obtain 

targeted fit of Q0

• Targeting makes use of information in P0
beyond Q0 to improve estimation of ψ0

• Provides an opportunity to
– Reduce asymptotic bias if initial initial estimator of 

Q0 not consistent
– Reduce finite sample bias
– Reduce variance
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General Overview: TMLE
3. Plug in updated (targeted) estimator of Q0 

into the parameter mapping Ψ to generate 
estimate

• What do we call this type of estimator?
• Assume you have the targeted fit of Q0 (we 

haven’t talked about how to get it yet). 
How would you estimate G comp estimand 
Ψ(P0) ?
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Overview of TMLE for ATE estimand

1. Estimate E0(Y|A,W)
– Use machine learning to respect statistical model
– Gives “best” estimate of E0(Y|A,W)

2. Modify this initial estimate of E0(Y|A,W)
– Target it to give better estimate of 

Ψ(P0)=EW(E0(Y|A=1,W)-E0(Y|A=0,W))
– This targeting requires estimation of g0(A|W)

3. Implement substitution estimator with new 
targeted estimate of E0(Y|A,W)
– For the TMLE, generally have that

n Ψ̂(Pn )−Ψ(P0 )( )→ N(0,σ 2 )
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Step by Step Overview: TMLE

1. Estimate

– Eg using super learner

– Notation for this initial estimate of E0 (Y|A,W): 

2. Generate predicted values for Y for each 

individual, given that individual’s Ai,Wi

– For participant i: 

E0(Y |A, W ) � Q̄0(A, W )

Q̄0
n(A, W )

“0” refers to initial 

(non-targeted) estimate
“n” because it is an estimate of 

the true  parameter value

Q̄0
n(Ai,Wi)

18



Step by Step Overview: TMLE

3. Estimate treatment mechanism
– g0(A|W)
– Eg using Super Learner
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Step by Step Overview: TMLE

4. Use this estimate to create a new “clever 
covariate” Hn(A,W) for each individual
– For subject i

– We will use this clever covariate to update our 
initial estimate  
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Hn(Ai,Wi) ⌘
✓

I(Ai = 1)

gn(Ai = 1|Wi)
� I(Ai = 0)

gn(Ai = 0|Wi)

◆



Step by Step Overview: TMLE
5. Update the initial estimate of E0 (Y|A,W)
• Run a logistic regression of Yi on Hn(Ai,Wi) using

(predicted value Y for each person ) 
as offset (suppressing intercept term)

• Let εn denote the resulting MLE estimate of the 
coefficient ε on Hn(A,W)

• Updated estimate:

logit(E(Y | Ai,Wi ) = logit(Qn

0
(Ai,Wi ))+εHn (Ai,Wi )

logit(Q
n

0
(Ai,Wi ))

21

Qn
*
(A,W ) = expit logit(Qn

0
)+εnHn (A,W )( )



Why? Very Informal Intuition
• Want to move our initial estimate

closer to the truth 
• Why? Because our initial estimate was aimed 

at achieving optimal bias/variance tradeoff for 
full regression function E0(Y|A,W)
– Wrong bias variance tradeoff for the target 

parameter
• Target parameter is lower dimensional- a single 

number, not a prediction for every (A,W) combination

• How? Need to do this in a targeted way
– We want to change the initial estimate by fitting it 

to the data where it matters most for target 
parameter

Qn
0
(A,W )

Q̄0(A,W ) ⌘ E0(Y |A,W )



Very Informal Intuition
• Not all deviations between initial estimate 

and truth are equally important 
– With confounding, certain covariate/treatment 

combinations are underrepresented 
• Relative to ideal situation (from a causal perspective) in 

which covariate distributions are balanced across 
treatment levels –think of IPTW 

– A large deviation between our initial estimator 
and the truth for an (a,w) level for which 
g(a|W=w) is small is more important to our 
(causally motivated) target parameter than its 
frequency in the observed data reflects

Qn
0
(A,W )



Very Informal Intuition
• Need to make this explicit when we update
– “Tell MLE” to give individuals with small predicted 

probability of observed treatment (gn(A|W) small) 
more weight when updating initial fit

• How can we do this?
• One option “clever covariate”

– if gn (A|W) is small, absolute covariate value is 
big, and thus a small change in epsilon has a 
bigger impact on the fit

Hn(Ai,Wi) ⌘
✓

I(Ai = 1)

gn(Ai = 1|Wi)
� I(Ai = 0)

gn(Ai = 0|Wi)

◆



Step by Step Overview: TMLE
6. Calculate predicted values for each individual 

under each treatment level of interest using 
the updated estimate

• For each individual, set a=1 and a=0 and generate 
predicted outcome with updated estimate

Q
n

*
(1,Wi ) = expit(logit(Qn

0
(1,Wi ))+εnHn (1,Wi ))

Q
n

*
(0,Wi ) = expit(logit(Qn

0
(0,Wi ))+εnHn (0,Wi ))
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Qn
*
(A,W )

if gn(0|Wi) is small,
Then Hn(0,Wi) is big, 
and initial fit is updated more



Step by Step Overview: TMLE
7. Estimate Ψ(P0) as the empirical mean of the 

predicted values of Y for a=1 and a=0, based 
on the updated fit 
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 ̂TMLE(Pn) =
1

n

nX

i=1

⇥
Q̄⇤

n(1,Wi)� Q̄⇤
n(0,Wi)

⇤



A bit more about why this update 
works…

1. Estimating functions and estimating 
equations

2. Link to influence curves
3. The efficient influence curve
• TMLE is a substitution estimator that also 

solves the estimating equation corresponding 
to the efficient influence curve
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Brief intro to estimating equations
• An Estimating Function D(O| ѱ) is a function 

of the observed data and the (unknown) 
parameter of interest
– Observe n i.i.d. copies of Oi, i=1,…n; O~P0

– Parameter of interest Ѱ(P0)=ѱ
– Unbiased estimating function: E0[D(O| ѱ)]=0 

• Estimating Equation:

• Estimator: ѱn defined as the solution 
satisfying
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0 =
1

n

nX

i=1

D(Oi| )

1

n

nX

i=1

D(Oi| n) = 0



Simple example: Population mean
• Observe n i.i.d. copies of Oi=Yi; O~P0

• Parameter of interest Ѱ(P0)= ѱ =E0(Y) 
• Let D(O| ѱ)=Y- ѱ
– Note: E0[D(O| ѱ)]=E0(Y)- ѱ=0

• Estimating Equation:

• Estimator 
– Sample mean as estimator of population mean 

can be understood as root of an estimating 
equation
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0 =
1

n

nX

i=1

(Yi �  )

 n =
1

n

nX

i=1

(Yi)



IPTW estimator defined as solution to 
an estimating equation

• Observe n i.i.d. copies of Oi=(Wi Ai Yi); O~P0

• Parameter of interest:

• Estimating function:

– Note: if treatment mechanism g is not known, then it 
is a “nuisance parameter” which must be estimated

• Estimating Equation:
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 (P0) = E0

✓
I(A = a)

g0(A|W )
Y

◆

0 =
1

n

nX

i=1

I(Ai = a)

gn(Ai|Wi)
Yi �  

 n =
1

n

nX

I=1

I(Ai = a)

gn(Ai|Wi)
Yi

DIPTW (O|g, ) = I(A = a)

g(A|W )
Y �  

(Non-stabilized) IPTW estimator:



Influence Curves and Estimating 
Functions

• Recall: An estimator is asymptotically linear with 
influence curve IC(Oi) if it satisfies

• Because E0(IC(O))=0, if we know the IC of an 
estimator, then we can use it as an estimating 
function
– Estimating equation will be unbiased, up to a second 

order term

Converges to 0 in probability as n-
>∞, even when multiplied by √n

E0(IC(O))=0
Var(IC(O)) Finite
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 n �  =
1

n

nX

i=1

IC(Oi) + oP0

✓
1p
n

◆



Example: IC of IPTW
• Assume g0 is known, and strong positivity
• IC of the IPTW estimator: 

– Note: E0DIPTW(O|g0, ѱ)=0

– For known g0, variance of the IPTW estimator 
well-approximated by var[D(Oi|g0, ѱn)]/n 32

Exact equality-
no remainder term n �  =

1

n

nX

i=1

D(Oi|g0, )

=
1

n

nX

i=1

I(Ai = a)

g0(Ai|Wi)
Yi �  

DIPTW (O|g0, ) =
I(A = a)

g0(A|W )
Y �  



Example: IC of IPTW

• If g0 is estimated using a correctly specified 
parametric model, the IC that treats g0 as 
known gives conservative variance estimates 
(overestimates variance)

• Why?
IC of IPTW estimator with g0 estimated=

IC of IPTW estimator with g0 known – projection
• Estimating g0 (using a correctly specified 

parametric model) reduces the variance of the 
IC and thus of the IPTW estimator 33



Influence Curves vs.
The Efficient Influence Curve 

• For a given a statistical estimation problem:
– n i.i.d. copies of Oi, O~P0 ∊M
– Target parameter Ѱ(P0)=ѱ

1. Influence curves (or influence functions) are 
estimator- specific
– Each asymptotically linear estimator has an influence curve 
– Influence curve teaches us about the asymptotic variance 

of the estimator
2. The efficient influence curve is parameter-specific
– Teaches us about the asymptotic variance of the most 

efficient regular asymptotically linear estimator for that 
parameter

– i.e. the estimator with the lowest asymptotic variance 34



Efficient Influence Curve
• An estimator is efficient if and only if it is 

asymptotically linear with influence curve the 
efficient influence curve D*(P0):

– Efficient influence curve needs to be derived for a 
given estimation problem

• An efficient estimator needs to solve the 
estimating equation corresponding to efficient 
influence curve (up to second order term)
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Ψ̂(Pn )−Ψ(P0 ) =
1
n

D*(P0 )(Oi )+oP
i=1

n

∑ 1/ n( )

0 = 1
n

D*(P)(Oi )
i=1

n

∑



TMLE solves efficient IC equation
• TMLE solves

– Efficient influence curve:

– Stage 2 targeting fits ε by maximum likelihood
• MLE solves score equation

• We defined our parameter-specific Hn and fit with MLE to 
ensure that empirical mean of a equals 0

– As a substitution estimator,
thus empirical mean of b equals 0 
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D*(P) = A
g(A |W )

−
1− A
g(0 |W )

⎡

⎣
⎢

⎤

⎦
⎥ Y −Q(A,W )⎡
⎣

⎤
⎦+Q(1,W )−Q(0,W )−ψ

0 = 1
n

D*(Pn
*)(Oi )

i=1

n

∑

Hn (Ai,Wi ) Yi −Qn
*
(Ai,Wi )

⎡
⎣⎢

⎤
⎦⎥

i=1

n

∑ = 0

ψn
TMLE =

1
n

Qn
*
(1,Wi )−Qn

*
(0,Wi )

⎡
⎣⎢

⎤
⎦⎥

i=1

n

∑

a b



Influence curve-based Inference
• Under conditions (see Ch 27 TLB) TMLE is asymptotically 

linear estimator
• If g0 and Q0 are estimated consistently, then the influence 

curve of the resulting TMLE equals the Efficient Influence 
Curve

• Depends on unknown nuisance parameters g0 and Q0
– Can estimate the influence curve of the TMLE as: 

• If g0 is estimated consistently (with MLE) but Q0 is not 
then this provides conservative approximation of the IC
– i.e. can use it to get conservative variance estimate

37

D
⇤(P0)(O) =

✓
I(A = 1)

g0(1|W )
� I(A = 0)

g0(0|W )

◆�
Y � Q̄0(A,W )

�
+ Q̄0(1|W )� Q̄0(0,W )�  0

ICn(O) =

✓
I(A = 1)

gn(1|W )
� I(A = 0)

gn(0|W )

◆�
Y � Q̄

⇤
n(A,W )

�
+ Q̄

⇤
n(1|W )� Q̄

⇤
n(0,W )�  n



Influence curve-based Inference
• Variance of an asymptotically linear estimator 

is well-approximated by the variance of its 
Influence curve/n

1. (Conservatively) estimate the TMLE Influence 
Curve by plugging in estimates of gn and Qn

2. To estimate variance of the estimator: take 
sample variance of the estimated influence 
curve and divide by sample size

• 95% CI:
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 n(Q
⇤
n)± 1.96�̂/

p
n

�̂
2 =

1

n

nX

i=1

D̂
⇤2(P ⇤

n)(Oi)



Augmented IPTW
• Efficient and double robust

• Like TMLE: Solves the the estimating equation corresponding 
to the efficient influence curve

• Defined as a solution to an estimating equation 
• Unlike TMLE: Not a substitution estimator

– Define estimating function:

– Estimate g and Q and solve estimating equation for ѱ
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D
⇤(O|Q, g, ) =

✓
I(A = 1)

g(1|W )
� I(A = 0)

g(0|W )

◆�
Y � Q̄(A,W )

�
+ Q̄(1|W )� Q̄(0,W )�  

0 =
1

n

nX

i=1

✓
I(Ai = 1)

gn(1|Wi)
� I(I = 0)

gn(0|Wi)

◆�
Yi � Q̄n(Ai,i )

�
+ Q̄n(1|Wi)� Q̄n(0,Wi)�  

�

 n =
1

n

nX

i=1

✓
I(Ai = 1)

gn(1|Wi)
� I(I = 0)

gn(0|Wi)

◆�
Yi � Q̄n(Ai,i )

�
+ Q̄n(1|Wi)� Q̄n(0,Wi)

�



Why we might prefer TMLE to other 
double robust estimators

• As a substitution estimator, automatically 
respects the bounds of the model
– This is important when there are near positivity 

violations, i.e. g0 is close to zero
• Can improve stability

– Nera positivity violations can still impact the 
performance of TMLE…

• In general, estimating equations… 
– Might not have a solution
– Might only have a solution outside parameter space
– Might have multiple solutions, with no criterion to 

choose between them…



TMLE: Some take home messages

• TMLE is Double Robust: Consistent if either g0
or Q0 are estimated consistently

• TMLE is efficient if g0 and Q0 are both 
estimated consistently at a reasonable rate

• This can translate into real bias and  variance 
improvement
– Reduce asymptotic bias if initial initial estimator of 

Q0 not consistent
– Reduce finite sample bias
– Reduce variance
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TMLE: Some take home messages

• Use data-adaptive estimation (Super Learning) 
for g and Q 
– Asymptotic linearity relies on bias disappearing at 

a fast enough rate 
– Influence curve-based inference relies on g0 being 

estimated consistently 
• Conservative variance estimate

– Good estimation of both g0 and Q0 gives us 
efficiency
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TMLE: Beyond simple single time point… 

• TMLE is a general method; broad applications
– Longitudinal problems with time-dependent confounding
– Parameters of (longitudinal) marginal structural models
– Dynamic regimes (personalized treatment/adaptive 

strategies)
– Informative censoring
– RCTs (including SMART designs) for improved efficiency

• Estimands, estimators and implementation differ
• R packages implementing all of the above are 

available (ltmle, tmle, SuperLearner)
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Example: Alternative TMLE
• Can also target initial estimate        by running an 

intercept-only weighted logistic regression with:
– Outcome: Y
– Offset: 
– Weight:

• i.e. have moved the “clever covariate” to the 
weights
– This has benefits in face of positivity violations
– This is the option implemented in ltmle package

Qn
0

Hn (A,W ) =
I(A =1)
gn (A |W )

logit(Qn
0
)



General TMLE Procedure
1. Identify the “hardest” parametric submodel to 

fluctuate initial estimate of P_0
– Small fluctuation ->  maximum change in target

2. Identify optimal magnitude of fluctuation by MLE
3. Apply optimal fluctuation to Initial estimate to obtain 

1st-step TMLE
4. Repeat until incremental fluctuation is zero
– 1-step convergence guaranteed in some important cases

5. Final probability distribution solves efficient influence 
curve equation
– Basis for asymptotic linearity, normality, and efficiency.
– Confers double robustness, or, more general, makes bias 

a second order term.
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