# Lecture 11: TMLE

#### Outline

- Intro to TMLE:
  - Properties
  - Implementation: TMLE for ATE estimand
- Some background on TMLE
  - Estimating Equations
  - Estimating Equations and influence curves
  - Efficient influence curve
  - TMLE solves estimating equation corresponding to efficient IC
- A-IPW: DR efficient estimating equation-based estimator
- TMLE in practice...

#### References

- TLB. Chapters 4-6
- Kennedy, 2017: https://arxiv.org/abs/1709.06418v1

### The Roadmap

- 1. Specify **Causal Model** representing <u>real</u> background knowledge
- 2. Specify Causal Question
- 3. Specify Observed Data and link to causal model
- 4. Identify: Knowledge + data sufficient?
- Commit to an **estimand** as close to question as possible, and a **statistical model** representing real knowledge.
- 6. Estimate
- 7. Interpret Results

# Estimate the Chosen Parameter of the Observed Data Distribution

- For illustration we are focusing primarily on a single statistical estimation problem
  - $O=(W,A,Y)^{\sim}P_0$ 
    - Statistical model is non- or semi-parametric
  - $-\Psi(P_0)=E_{W,0}(E_0(Y|A=1,W)-E_0(Y|A=1,W))$ 
    - If W satisfies backdoor criteria, equal to the ATE
- Focusing on three classes of estimator
  - Simple substitution (G-comp)
  - IPTW
  - Today: Double Robust- Specifically, AIPW and TMLE

#### Overview of Estimators

- Each class of estimator requires for its implementation an estimator of a distinct factor of the observed data distribution
- Distribution of the observed data:
- $P_0(O)=P_0(W,A,Y) = P_0(W) P_0(A|W) P_0(Y|A,W)$

# Different Estimators require estimators of distinct factors of the observed data distribution

- $P_0(O)=P_0(W,A,Y)=P_0(W)P_0(A|W)P_0(Y|A,W)$
- Simple substitution estimators
  - Also referred to as "G-computation" estimators
  - Actually, rather than full  $P_0(Y|A,W)$ , only require estimators of  $E_0(Y|A,W)$  (and  $P_0(W)$ )
- Consistency depends on consistent estimation of E<sub>0</sub> (Y|A,W)
  - Super Learning can help here, but...

#### **IPTW Estimators**

•  $P_0(O)=P_0(W,A,Y)=P_0(W)P_0(A|W)P_0(Y|A,W)$ 

#### Inverse probability weighted estimators

- Consistency of IPTW estimators depends on consistent estimation of  $g_0(A|W)=P_0(A|W)$ 
  - Super learning can help here, but....

# Coming next: Double Robust Estimators

- $P_0(O)=P_0(W,A,Y)=P_0(Y|A,W) P_0(A|W) P_0(W)$ Double Robust estimators: - A-IPTW - TMLE
- These asymptotic properties typically translate into lower bias and variance in finite samples
- Can integrate machine learning and still maintain valid statistical inference
  - Meaningful CIs and p values

# Coming next: Double Robust Estimators

•  $P_0(O) = P_0(W,A,Y) = P_0(Y|A,W) P_0(A|W) P_0(W)$ 

Double Robust estimators:

- A-IPTW
- TMLE

- Implementation requires estimators of both  $E_0(Y|A,W)$  and  $g_0(A|W)$
- Consistent if <u>either</u> E<sub>0</sub> (Y|A,W) <u>or</u> g<sub>0</sub> (A|W) are estimated consistently

# Coming next: Double Robust Estimators

•  $P_0(O)=P_0(W,A,Y)=P_0(Y|A,W)P_0(A|W)P_0(W)$ 

#### Double Robust estimators:

- A-IPTW
- TMLE
- If <u>both</u> E<sub>0</sub> (Y|A,W) and g<sub>0</sub> (A|W) are estimated consistently (at rates faster than n<sup>-1/4</sup>) then these estimators are efficient
  - Lowest asymptotic variance of any reasonable estimator
  - In semiparametric (or non-parametric) statistical model that makes assumptions, if any, only on P<sub>0</sub>(A|W)

# Targeted Maximum Likelihood Estimation

- TMLE is a general methodology
- As with other estimators, we will focus on estimation of the "G comp estimand" corresponding under causal assumptions to the ATE:

$$\Psi(P_0)=E_{W,0}(E_0(Y|A=1,W)-E_0(Y|A=0,W))$$

#### **General Overview: TMLE**

- 1. Estimate the portion of  $P_0$  that the target parameter is a function of (i.e., estimate  $Q_0$ )
  - $-\Psi(P_0)=\Psi(Q_0)$
- What is Q<sub>0</sub> for the G-comp estimand?
- How could you estimate it?

#### **General Overview: TMLE**

- 2. Update initial estimator of  $Q_0$  to obtain targeted fit of  $Q_0$
- Targeting makes use of information in  $P_0$  beyond  $Q_0$  to improve estimation of  $\psi_0$
- Provides an opportunity to
  - Reduce asymptotic bias if initial initial estimator of  $Q_0$  not consistent
  - Reduce finite sample bias
  - Reduce variance

#### **General Overview: TMLE**

- 3. Plug in updated (targeted) estimator of  $Q_0$  into the parameter mapping  $\Psi$  to generate estimate
- What do we call this type of estimator?
- Assume you have the targeted fit of  $Q_0$  (we haven't talked about how to get it yet).
  - How would you estimate G comp estimand  $\Psi(P_0)$ ?



#### Overview of TMLE for ATE estimand

- 1. Estimate  $E_0(Y|A,W)$ 
  - Use machine learning to respect statistical model
  - Gives "best" estimate of  $E_0(Y|A,W)$
- 2. Modify this initial estimate of  $E_0(Y|A,W)$ 
  - Target it to give better estimate of  $\Psi(P_0)=E_W(E_0(Y|A=1,W)-E_0(Y|A=0,W))$
  - This targeting requires estimation of g<sub>0</sub>(A|W)
- 3. Implement substitution estimator with new targeted estimate of  $E_0(Y|A,W)$ 
  - For the TMLE, generally have that

$$\sqrt{n}\left(\hat{\Psi}(P_n) - \Psi(P_0)\right) \rightarrow N(0,\sigma^2)$$

- 1. Estimate  $E_0(Y|A,W) \equiv \bar{Q}_0(A,W)$ 
  - Eg using super learner
- Notation for this initial estimate of  $E_0(Y|A,W)$ :



- 2. Generate predicted values for Y for each individual, given that individual's A<sub>i</sub>,W<sub>i</sub>
  - For participant i:  $\bar{Q}_n^0(A_i,W_i)$

- 3. Estimate treatment mechanism
  - $-g_0(A|W)$
  - Eg using Super Learner

- 4. Use this estimate to create a new "clever covariate"  $H_n(A,W)$  for each individual
  - For subject i

$$H_n(A_i, W_i) \equiv \left(\frac{I(A_i = 1)}{g_n(A_i = 1|W_i)} - \frac{I(A_i = 0)}{g_n(A_i = 0|W_i)}\right)$$

We will use this clever covariate to update our initial estimate

- 5. Update the initial estimate of  $E_0(Y|A,W)$
- Run a logistic regression of  $Y_i$  on  $H_n(A_i, W_i)$  using  $\log it(\overline{Q}_n^0(A_i, W_i))$  (predicted value Y for each person ) as offset (suppressing intercept term)

$$\log it(E(Y \mid A_i, W_i)) = \log it(\overline{Q}_n^0(A_i, W_i)) + \varepsilon H_n(A_i, W_i)$$

- Let  $\varepsilon_n$  denote the resulting MLE estimate of the coefficient  $\varepsilon$  on  $H_n(A,W)$
- Updated estimate:

$$\overline{Q}_n^*(A, W) = \operatorname{expit}\left(\operatorname{logit}(\overline{Q}_n^0) + \varepsilon_n H_n(A, W)\right)$$

#### Why? Very Informal Intuition

- Want to move our initial estimate  $\overline{Q}_n^0(A,W)$  closer to the truth  $\overline{Q}_0(A,W) \equiv E_0(Y|A,W)$
- Why? Because our initial estimate was aimed at achieving optimal bias/variance tradeoff for full regression function  $E_0(Y|A,W)$ 
  - Wrong bias variance tradeoff for the target parameter
    - Target parameter is lower dimensional- a single number, not a prediction for every (A,W) combination
- How? Need to do this in a targeted way
  - We want to change the initial estimate by fitting it to the data where it matters most for target parameter

#### Very Informal Intuition

- Not all deviations between initial estimate  $\overline{Q}_n^0(A,W)$  and truth are equally important
  - With confounding, certain covariate/treatment combinations are underrepresented
    - Relative to ideal situation (from a causal perspective) in which covariate distributions are balanced across treatment levels –think of IPTW
  - A large deviation between our initial estimator and the truth for an (a,w) level for which g(a|W=w) is small is more important to our (causally motivated) target parameter than its frequency in the observed data reflects

#### Very Informal Intuition

- Need to make this explicit when we update
  - "Tell MLE" to give individuals with small predicted probability of observed treatment (g<sub>n</sub>(A|W) small) more weight when updating initial fit
- How can we do this?
- One option "clever covariate"

$$H_n(A_i, W_i) \equiv \left(\frac{I(A_i = 1)}{g_n(A_i = 1|W_i)} - \frac{I(A_i = 0)}{g_n(A_i = 0|W_i)}\right)$$

 if g<sub>n</sub> (A|W) is small, absolute covariate value is big, and thus a small change in epsilon has a bigger impact on the fit

- 6. Calculate predicted values for each individual under each treatment level of interest using the updated estimate  $\overline{Q}_n^*(A,W)$
- For each individual, set a=1 and a=0 and generate predicted outcome with updated estimate

$$\overline{Q}_{n}^{*}(1,W_{i}) = \exp it(\log it(\overline{Q}_{n}^{0}(1,W_{i})) + \varepsilon_{n}H_{n}(1,W_{i}))$$

$$\overline{Q}_{n}^{*}(0,W_{i}) = \exp it(\log it(\overline{Q}_{n}^{0}(0,W_{i})) + \varepsilon_{n}H_{n}(0,W_{i}))$$
if  $g_{n}(0|W_{i})$  is small,
Then  $H_{n}(0,W_{i})$  is big,
and initial fit is updated more

7. Estimate  $\Psi(P_0)$  as the empirical mean of the predicted values of Y for a=1 and a=0, based on the updated fit

$$\hat{\Psi}_{TMLE}(P_n) = \frac{1}{n} \sum_{i=1}^{n} \left[ \bar{Q}_n^*(1, W_i) - \bar{Q}_n^*(0, W_i) \right]$$

# A bit more about why this update works...

- 1. Estimating functions and estimating equations
- 2. Link to influence curves
- 3. The efficient influence curve
- TMLE is a substitution estimator that also solves the estimating equation corresponding to the efficient influence curve

# Brief intro to estimating equations

- An Estimating Function  $D(O|\psi)$  is a function of the observed data and the (unknown) parameter of interest
  - Observe n i.i.d. copies of  $O_i$ , i=1,...n;  $O^P_0$
  - Parameter of interest  $\Psi(P_0)=\psi$
  - Unbiased estimating function:  $E_0[D(O|\psi)]=0$
- Estimating Equation:  $0 = \frac{1}{n} \sum_{i=1}^{n} D(O_i | \psi)$
- Estimator:  $\psi_{\mathsf{n}}$  defined as the solution satisfying  $\frac{1}{n}\sum D(O_i|\psi_n)=0$

# Simple example: Population mean

- Observe n i.i.d. copies of O<sub>i</sub>=Y<sub>i</sub>; O~P<sub>0</sub>
- Parameter of interest  $\Psi(P_0) = \psi = E_0(Y)$
- Let D(O | ψ)=Y- ψ
  - Note:  $E_0[D(O|\psi)]=E_0(Y)-\psi=0$
- Estimating Equation:  $0 = \frac{1}{n} \sum_{i=1}^{n} (Y_i \psi)$
- Estimator  $\psi_n = \frac{1}{n} \sum_{i=1}^n (Y_i)$ 
  - Sample mean as estimator of population mean can be understood as root of an estimating equation

# IPTW estimator defined as solution to an estimating equation

- Observe n i.i.d. copies of O<sub>i</sub>=(W<sub>i</sub> A<sub>i</sub> Y<sub>i</sub>); O<sup>P</sup>0
- Parameter of interest:  $\Psi(P_0) = E_0 \left( \frac{I(A=a)}{g_0(A|W)} Y \right)$
- Estimating function:  $D_{IPTW}(O|g,\psi) = \frac{I(A=a)}{g(A|W)}Y \psi$ 
  - Note: if treatment mechanism g is not known, then it is a "nuisance parameter" which must be estimated
- Estimating Equation:  $0 = \frac{1}{n} \sum_{i=1}^{n} \frac{I(A_i = a)}{g_n(A_i|W_i)} Y_i \psi$

(Non-stabilized) IPTW estimator: 
$$\psi_n = \frac{1}{n} \sum_{I=1}^n \frac{I(A_i = a)}{g_n(A_i|W_i)} Y_i$$

# Influence Curves and Estimating Functions

 Recall: An estimator is asymptotically linear with influence curve IC(O<sub>i</sub>) if it satisfies

$$\psi_n - \psi = \frac{1}{n} \sum_{i=1}^n IC(O_i) + o_{P_0} \left(\frac{1}{\sqrt{n}}\right)$$

$$\mathsf{E_0}(\mathsf{IC}(\mathsf{O})) = 0$$

$$\mathsf{Var}(\mathsf{IC}(\mathsf{O})) \text{ Finite}$$

$$\mathsf{Converges to 0 in probability as n-} \mathsf{ver}(\mathsf{IC}(\mathsf{O})) \text{ Finite}$$

$$\mathsf{ver}(\mathsf{IC}(\mathsf{O})) = 0$$

- Because E<sub>0</sub>(IC(O))=0, if we know the IC of an estimator, then we can use it as an estimating function
  - Estimating equation will be unbiased, up to a second order term

#### Example: IC of IPTW

- Assume  $g_0$  is known, and strong positivity
- IC of the IPTW estimator:

$$D_{IPTW}(O|g_0, \psi) = \frac{I(A=a)}{g_0(A|W)}Y - \psi$$

- Note:  $E_0D_{IPTW}(O|g_0, \psi)=0$ 

$$\psi_n - \psi = rac{1}{n} \sum_{i=1}^n D(O_i | g_0, \psi)$$
 Exact equality-no remainder term

$$= \frac{1}{n} \sum_{i=1}^{n} \frac{I(A_i = a)}{g_0(A_i|W_i)} Y_i - \psi$$

– For known  $g_0$ , variance of the IPTW estimator well-approximated by var[D(O<sub>i</sub>|g<sub>0</sub>, ψ<sub>n</sub>)]/n

### Example: IC of IPTW

- If  $g_0$  is estimated using a correctly specified parametric model, the IC that treats  $g_0$  as known gives conservative variance estimates (overestimates variance)
- Why?
  - IC of IPTW estimator with  $g_0$  estimated=
    IC of IPTW estimator with  $g_0$  known projection
- Estimating g<sub>0</sub> (using a correctly specified parametric model) reduces the variance of the IC and thus of the IPTW estimator

# Influence Curves vs. The Efficient Influence Curve

- For a given a statistical estimation problem:
  - n i.i.d. copies of  $O_i$ ,  $O^P_0$  ∈ M
  - Target parameter  $\Psi(P_0)=\psi$
- 1. <u>Influence curves</u> (or influence functions) are estimator- specific
  - Each asymptotically linear estimator has an influence curve
  - Influence curve teaches us about the asymptotic variance of the estimator
- 2. The efficient influence curve is parameter-specific
  - Teaches us about the asymptotic variance of the most efficient regular asymptotically linear estimator for that parameter
  - i.e. the estimator with the lowest asymptotic variance

#### Efficient Influence Curve

• An estimator is efficient if and only if it is asymptotically linear with influence curve the efficient influence curve  $D^*(P_0)$ :

$$\hat{\Psi}(P_n) - \Psi(P_0) = \frac{1}{n} \sum_{i=1}^n D^*(P_0)(O_i) + o_P(1/\sqrt{n})$$

- Efficient influence curve needs to be derived for a given estimation problem
- An efficient estimator needs to solve the estimating equation corresponding to efficient influence curve (up to second order term)

$$0 = \frac{1}{n} \sum_{i=1}^{n} D * (P)(O_i)$$

### TMLE solves efficient IC equation

• TMLE solves  $0 = \frac{1}{n} \sum_{i=1}^{n} D^*(P_n^*)(O_i)$ 

– Efficient influence curve:

$$D^{*}(P) = \left[\frac{A}{g(A \mid W)} - \frac{1 - A}{g(0 \mid W)}\right] \left[Y - \overline{Q}(A, W)\right] + \overline{Q}(1, W) - \overline{Q}(0, W) - \psi$$
a

- Stage 2 targeting fits ε by maximum likelihood
  - MLE solves score equation  $\sum_{i=1}^{n} H_n(A_i, W_i) \Big[ Y_i \overline{Q}_n^*(A_i, W_i) \Big] = 0$
  - We defined our parameter-specific H<sub>n</sub> and fit with MLE to ensure that empirical mean of a equals 0,
- As a substitution estimator,  $\psi_n^{TMLE} = \frac{1}{n} \sum_{i=1}^n \left[ \overline{Q}_n^*(1, W_i) \overline{Q}_n^*(0, W_i) \right]$  thus empirical mean of **b** equals 0

#### Influence curve-based Inference

- Under conditions (see Ch 27 TLB) TMLE is asymptotically linear estimator
- If  $g_0$  and  $Q_0$  are estimated consistently, then the influence curve of the resulting TMLE equals the Efficient Influence Curve

$$D^*(P_0)(O) = \left(\frac{I(A=1)}{g_0(1|W)} - \frac{I(A=0)}{g_0(0|W)}\right) \left(Y - \bar{Q}_0(A,W)\right) + \bar{Q}_0(1|W) - \bar{Q}_0(0,W) - \psi_0$$

- Depends on unknown nuisance parameters g<sub>0</sub> and Q<sub>0</sub>
  - Can estimate the influence curve of the TMLE as:

$$IC_n(O) = \left(\frac{I(A=1)}{g_n(1|W)} - \frac{I(A=0)}{g_n(0|W)}\right) \left(Y - \bar{Q}_n^*(A,W)\right) + \bar{Q}_n^*(1|W) - \bar{Q}_n^*(0,W) - \psi_n$$

- If  $g_0$  is estimated consistently (with MLE) but  $Q_0$  is not then this provides conservative approximation of the IC
  - i.e. can use it to get conservative variance estimate

#### Influence curve-based Inference

- Variance of an asymptotically linear estimator is well-approximated by the variance of its Influence curve/n
- 1. (Conservatively) estimate the TMLE Influence Curve by plugging in estimates of  $g_n$  and  $Q_n$
- 2. To estimate variance of the estimator: take sample variance of the estimated influence curve and divide by sample size

• 95% CI: 
$$\psi_n(Q_n^*) \pm 1.96 \hat{\sigma}/\sqrt{n}$$
 
$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \hat{D}^{*2}(P_n^*)(O_i)$$

### Augmented IPTW

- Efficient and double robust
  - Like TMLE: Solves the the estimating equation corresponding to the efficient influence curve
- Defined as a solution to an estimating equation
  - Unlike TMLE: Not a substitution estimator
  - Define estimating function:

$$D^*(O|Q,g,\psi) = \left(\frac{I(A=1)}{g(1|W)} - \frac{I(A=0)}{g(0|W)}\right) \left(Y - \bar{Q}(A,W)\right) + \bar{Q}(1|W) - \bar{Q}(0,W) - \psi$$

- Estimate g and Q and solve estimating equation for  $\psi$ 

$$0 = \frac{1}{n} \sum_{i=1}^{n} \left[ \left( \frac{I(A_i = 1)}{g_n(1|W_i)} - \frac{I(I = 0)}{g_n(0|W_i)} \right) \left( Y_i - \bar{Q}_n(A_{i,i}) \right) + \bar{Q}_n(1|W_i) - \bar{Q}_n(0, W_i) - \psi \right]$$

$$\psi_n = \frac{1}{n} \sum_{i=1}^{n} \left[ \left( \frac{I(A_i = 1)}{g_n(1|W_i)} - \frac{I(I = 0)}{g_n(0|W_i)} \right) \left( Y_i - \bar{Q}_n(A_i, i) \right) + \bar{Q}_n(1|W_i) - \bar{Q}_n(0, W_i) \right]$$
39

# Why we might prefer TMLE to other double robust estimators

- As a substitution estimator, automatically respects the bounds of the model
  - This is important when there are near positivity violations, i.e.  $g_0$  is close to zero
    - Can improve stability
  - Nera positivity violations can still impact the performance of TMLE...
- In general, estimating equations...
  - Might not have a solution
  - Might only have a solution outside parameter space
  - Might have multiple solutions, with no criterion to choose between them...

### TMLE: Some take home messages

- TMLE is Double Robust: Consistent if either  $g_0$  or  $Q_0$  are estimated consistently
- TMLE is efficient if  $g_0$  and  $Q_0$  are both estimated consistently at a reasonable rate
- This can translate into real bias and variance improvement
  - Reduce asymptotic bias if initial initial estimator of  $Q_0$  not consistent
  - Reduce finite sample bias
  - Reduce variance

### TMLE: Some take home messages

- Use data-adaptive estimation (Super Learning) for g and Q
  - Asymptotic linearity relies on bias disappearing at a fast enough rate
  - Influence curve-based inference relies on g<sub>0</sub> being estimated consistently
    - Conservative variance estimate
  - Good estimation of both  $g_0$  and  $Q_0$  gives us efficiency

#### TMLE: Beyond simple single time point...

- TMLE is a general method; broad applications
  - Longitudinal problems with time-dependent confounding
  - Parameters of (longitudinal) marginal structural models
  - Dynamic regimes (personalized treatment/adaptive strategies)
  - Informative censoring
  - RCTs (including SMART designs) for improved efficiency
- Estimands, estimators and implementation differ
- R packages implementing all of the above are available (ltmle, tmle, SuperLearner)

### **Example: Alternative TMLE**

- Can also target initial estimate  $\overline{Q}_n^0$  by running an intercept-only weighted logistic regression with:
  - Outcome: Y
  - Offset:  $logit(\overline{Q}_n^0)$
  - Weight:  $H_n(A, W) = \frac{I(A=1)}{g_n(A \mid W)}$
- i.e. have moved the "clever covariate" to the weights
  - This has benefits in face of positivity violations
  - This is the option implemented in Itmle package

#### General TMLE Procedure

- 1. Identify the "hardest" parametric submodel to fluctuate initial estimate of P\_0
  - Small fluctuation -> maximum change in target
- 2. Identify optimal magnitude of fluctuation by MLE
- Apply optimal fluctuation to Initial estimate to obtain 1st-step TMLE
- 4. Repeat until incremental fluctuation is zero
  - 1-step convergence guaranteed in some important cases
- 5. Final probability distribution solves efficient influence curve equation
  - Basis for asymptotic linearity, normality, and efficiency.
  - Confers double robustness, or, more general, makes bias a second order term.