R Lab 1 - Defining the Causal Parameter & Introduction to
Simulations in R

Introduction to Causal Inference

Goals:

1. Review the structural causal model (SCM), counterfactuals, and causal parameters, defined with and
without a working marginal structural model (MSM).

2. Given a specific data generating process, obtain the value of the target causal parameter W7 (Py x) in
closed form.

3. Introduce simulations in R. Translate a specific data generating process, which is an element of the causal
model, into an R simulation.

4. Simulate the counterfactual outcomes Y, for levels of the exposure of interest, and obtain the value of
target causal parameter using simulations.

Next lab:

We will obtain the value of the statistical estimand, which under the needed identifiability assumptions equals the
target causal parameter. We will also implement the simple substitution estimator, based on the G-computation
identifiability result, and use simulations to evaluate the properties of estimators.

Reminder:
This is not an R class. However, software is an important bridge between the statistical concepts and imple-
mentation.

1 Background Story

Suppose we are interested in the causal effect of butterbeer consumption on happiness among wizards at Hog-
warts. Specifically, we want to know if the average happiness would be higher if all wizards consumed butterbeer
or if all wizards did not. Let W1 be a summary measure the student’s pre-exposure covariates, including age,
house, gender, friendship with Dumbledore and enemy status with Snape. Let W2 be an additional baseline
covariate, indicating whether the student had permission to travel to Hogsmeade, a location where butterbeer
is sold. We consider a binary exposure A, indicating consumption of butterbeer (A = 1) or not (A = 0). Denote
the outcome happiness with Y. Finally, suppose having a permission W2 only affects the exposure A, but has
no direct effect on the happiness Y.
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This study can be translated into the following, structural causal model (SCM) M7 :

Endogenous Nodes: X = (W1, W2, /A)Y)
Exogenous (Unmeasured) Nodes: U = (U1, Uwe,Ua, Uy ) ~ Py
Structural Equations F':
W1 = fwi1(Uw1)
W2 = fya(W1,Upws)
A= fa(W1,W2,Uy)
Y = fy (W1, A,Uy)

1. Draw the corresponding directed acyclic graph (DAG).
2. Are there any exclusion restrictions? Are there any independence assumptions?
3. Define the counterfactual outcomes of interest with formal notation and in words.

4. In the SCM framework, how are counterfactuals derived? What does the SCM tell us about
all possible distributions for these counterfactuals?

Solution:

1. This study can be translated into the directed acyclic graph, given in Fig. 1.

2. We are making an exclusion restriction; the baseline covariate W2 does not directly affect the outcome
Y. We have not made any independence assumptions. In other words, there are no restrictions on
the joint distribution of the unmeasured factors Py .

3. The counterfactuals of interest are (Y, : a € A = {0,1}). Here, Y} is the counterfactual happiness if,
possibly contrary to fact, a wizard drank butterbeer and Yj is the counterfactual happiness if, possibly
contrary to fact, a wizard did not drink butterbeer.

4. Counterfactuals are derived by intervening on SCM to set A = a. The distribution of counterfactuals
is implied by the joint distribution of (U, X), which is denoted Py x. The SCM M7 defines for the
set of allowed counterfactual distributions. (This is why it is called a “model”.)
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Solution Fig. 1: Directed acyclic graph for the butterbeer consumption and happiness study. Here, U
represents the background/unmeasured factors for all the endogenous nodes. Alternatively, we could have
specified separate nodes (Uw1, Uwa,Ua,Uy) and drawn double-headed arrows between them. We do not
have any independence assumptions.

2 Target causal parameters defined without a MSM

Suppose our target causal parameter is the average treatment effect:

U7 (Pux) = Eu,x (Y1) — Eux (Yo)
=Eux|[fy(W1,1,Uy)] — Eux[fy (W1,0,Uy)]
This is the difference in the expected counterfactual happiness if all wizards were to drink butterbeer and the

expected counterfactual happiness if all wizards were not to drink butterbeer. In the second line, we have
replaced the counterfactual outcome Y, with the corresponding structural equation fy

In the previous section, we specified a SCM M7 | reflecting our limited knowledge of the data generating system.
We did not place any assumptions on the joint distribution of the exogenous nodes. We made only one exclusion
restriction. Finally, we did not make any assumptions about the functional form of the structural equations.

Now, we consider a particular data generating process Py, y, one of many compatible with M7

- Each of the exogenous factors U is drawn independently from the following distributions:

Uw1 ~ Uniform(min = 0,max = 1)
Uwa ~ Bernoulli(p = 0.5)
Ua ~ Normal(p = —3,0% = 1%)
Uy ~ Normal(u = 0,0% = 0.3%)

- Let us also specify the structural equations F":

W1 = fw1(Uw1) = I[Uw1 < 0.35]
W2 = fwa(W1,Upws) = W1+ 2*Upo
A= fa(WLW2,Us) =I[(1+ W1+ 2W2+Uys) > 0]
Y = fy(W1,A,Uy) =14 25*A+3*W1—0.25*A*W1+ Uy

where I[] is the indicator function and equal to 1 if the statement in the brackets is true.
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The distribution of exogenous terms U and the set of structural equations F' give us the joint distribution
of (U, X), denoted Py, x. This distribution is an element of (i.e. is one possible distribution compatible
with) the SCM: Py x € M7

. Evaluate U7 (P x) for this data generating process.

Interpret U7 (Py x).

Solution:

1. In this particular data generating system (one of many compatible with the SCM), the expectation
of the counterfactual outcome is a linear function of the treatment level a, covariate W1 and random
error Uy :

EU,X[Ya] = EU,X[]- +2.5%+3*W1—-0.25%a*"W1+ Uy]
=1+25%+ 3*EU7x[W1] — 0.25*&*]EU7X [Wl} +Ey x [Uy]

We also know that W1 is a Bernoulli random variable with probability 0.35:
Py x(W1=1)=Eyx[W1] =Eyx (I[Uw1 <0.35]) =0.35

Finally, the mean value of Uy is zero:
Euyx[Uy] =0

Therefore, the true value of the target causal parameter is
V7 (Py,x) = Ev,x (Y1 — o)
=1+25"143%0.35 - 0.25"170.35 + 0 — (1 4 2.5*0 + 3"0.35 — 0.25*0*0.35 4 0) = 2.4125

2. The counterfactual expected happiness would be 2.4125 units higher if all wizards consumed butterbeer
than if none of the wizards consumed butterbeer.

2.1

1.

Translating this data generating process for Py x into simulations

First, set the seed to 252. Type set.seed(252). The set.seed function ensures the same values
are generated each time each time we run all of our code. More information about this function can be
accessed with 7set.seed. Briefly, R generates the exogenous input U by calling a pseudorandom number
generator to simulate a Uniform(0, 1) variable and then transforming it to correspond with a draw from
the specified distribution. For example, a Bernoulli random variable with probability p is generated as an
indicator that this Uniform(0,1) is < p.

. Set n=5000 as the the number of draws from Py x.

Simulate the background factors U. To simulate from the uniform distribution, use runif () function,
setting the minimum and maximum values. To simulate from a Bernoulli with probability p, use the
rbinom() function, setting the size=1. To simulate from a normal distribution, use the rnorm() function,
setting the mean and standard deviation. More information on these functions can be found by typing
?runif, ?rnorm or ?rbinom.

. Evaluate the structural equations F' to deterministically generate the endogenous nodes X.

There are several ways to code indicator functions. One way is with logical variables and the as.numeric
function. Consider the following example.
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> # assign x=20 and x2=30

> x <= 20

> x2 <- 30

> # create a logical variable x3 from the result of the test x> x2
> x3<- (x > x2)

> x3

[1] FALSE

> # we can convert the logical variable into binary with the as.numeric function
> # R converts TRUE to 1 and FALSE to O
> x3<- as.numeric(x > x2)

> x3
[1] 0

5. Create a data frame X to hold these values. The rows are the n repetitions of the experiment and
the columns are the random variables. Use the data.frame function. Then use the head and summary
functions to get a better understanding of the data. (More information on these functions can be obtained
with 7data.frame, Thead and ?summary.)

Solution:

v

V VvV Vv VvV
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v

o O WN -

# 1. setting the seed
set.seed(252)

#2. setting the number of observations
n<- 5000

#3. simulating the Us

U.Wi<- runif(n, min=0, max=1)
U.W2<- rbinom(n, size=1, prob=0.5)
U.A<- rnorm(n, mean=-3, sd=1)
U.Y<- rnorm(n, mean=0, sd=0.3)

#4. Given the random input, deterministically evaluate the structural equations F
W1 = as.numeric( U.W1 < 0.35)

W2 = W1 + 2+U.W2

A = as.numeric( 1+W1+2*W2 + U.A > 0)

Y =1 +2.5%A + 3*W1 - 0.25*%A*W1 + U.Y

X<- data.frame (Wi, W2, A, Y)
head (X)
Wi W2 A Y

0 21 3.3561085

0 O 0 0.8793806

1 1 0 3.3546226

0 21 3.5474294

0 0 0 0.4332530

0 21 3.6398616
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> summary (X)

Wi W2 A Y

Min. :0.0000 Min. :0.000 Min. :0.0000 Min. :0.07914

1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:1.22898

Median :0.0000 Median :2.000 Median :1.0000 Median :3.50644

Mean :0.3372 Mean :1.338 Mean :0.6456 Mean :3.55352

3rd Qu.:1.0000 3rd Qu.:2.000 3rd Qu.:1.0000 3rd Qu.:6.00153

Max. :1.0000 Max. :3.000 Max. :1.0000 Max. 17.16974

2.2 Generate the counterfactual outcomes & obtain the value of the target causal
parameter

1. Intervene on the above data generating system to set butterbeer consumption a = {0,1} and
generate counterfactual outcomes Y,.

2. Add the resulting columns to the X matrix using either the data.frame or cbind function.

3. Does the counterfactual value Y, equal the observed Y when A = a?

4. Above, we evaluated the average treatment effect in closed form. Estimate ¥/ (Py,x) with the sim-
ulated counterfactuals. Given a large sample of i.i.d. draws of (Yp,Y7), we can closely approximate
Eu x[Y1 — Yo] with the sample average of the observed values of Y7 — Y.

Solution:

> # 1. intervene to set A=a and generate the counterfactual outcomes Y.a

v

V VvV Vv Vv DO WN - v

VvV Vv

Y.1<- 1 +2.5%1 + 3*W1 - 0.25%1*W1 + U.Y
Y.0<- 1 +2.5%0 + 3*W1 - 0.25%0*W1 + U.Y

# 2. add these columns to the dataframe
X<- data.frame(X, Y.1, Y.0)
head (X)
Wl W2 A Y Y.1 Y.0
0 21 3.3561085 3.356108 0.8561085
0 0 0 0.8793806 3.379381 0.8793806
1 1 0 3.3546226 5.604623 3.3546226
0 2 1 3.5474294 3.547429 1.0474294
0 0 0 0.4332530 2.933253 0.4332530
0 21 3.6398616 3.639862 1.1398616
#3. YES! We see the outcome Y when A=0 is equal to the counterfactual outcome Y.O.
# Likewise, the outcome Y when A=1 is equal to the counterfactual outcome Y.1.
# Given input of the background factors U, the structural equations are deterministic.

#4. Evaluation
Psi.F<- mean(Y.1 - Y.0)
Psi.F
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[1] 2.4157

> # QOur answers match! :)

3 Target causal parameters defined with a MSM

Suppose we are now interested in summarizing how the expectation of counterfactual happiness Y, varies as a
function of cups of butterbeer consumed a. We will assume that the latest wizarding technology allows precise
measurement of the amount of butterbeer consumed so that a may take on decimal values. For simplicity, ignore
baseline covariates.

We could use a marginal structural model (MSM) to summarize how the expected counterfactual outcome
changes as function of the exposure. Suppose, however, that we do not know the exact shape of the butterbeer-
happiness (dose-response) curve. Therefore, we use the following working MSM to define the target parameter
3 as the projection of the true causal curve Ey x (Y,) onto a summary model m(a|3):

B(Py, x|m) = argming Ey x lz (Ya — m(a|/8))2‘|

acA

m(a|B) = Bo + Sia

The causal parameter is then the value of the 3 coefficients that minimize the sum of squared residuals between
the counterfactual outcomes Y, and the predicted m(a|S) for all possible exposure levels a € A. In this case,
we are using a linear summary.

3.1 A specific data generating process

Consider the following data generating process for Py x:

Ua ~ Uniform(min =0, maz = 2)
Uy ~ Normal(u = 0,0% = 0.3%)
A= fa(Uy)=2"Uy
Y = fy(A,Uy) =4+9"A - 2.25"A? + Uy

where U4 1L Uy. Suppose we are interested in the counterfactual happiness Y, under butterbeer consumption
a€ A=10,1,2,3,4} cups.

1. For n = 5 wizards, generate the exogenous factors U = (Us,Uy). Then set A = 0 to simulate
the counterfactual happiness under 0 cups of butterbeer Y.0. Repeat for each of the 4 other
doses of butterbeer to generate counterfactual outcomes Y.1, Y.2, Y.3 and Y.4.

2. Use the c() function to combine (stack) all the counterfactual outcomes (Y.0, Y.1, Y.2, Y.3,
Y.4) into a single vector Y.a.

>n <-5
> Y.a<- c(Y.0, Y.1, Y.2, Y.3, Y.4)
3. Use the rep() function to create vector a with the corresponding exposures.

> a<- ¢( rep(0, n), rep(1, n), rep(2, n), rep(3, n), rep(4,n))
> a
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[1] 0000011111222223333344444

4. Create data frame X = (a,Y,), consisting of the set treatment levels and corresponding
counterfactual outcomes.

5. Plot the counterfactual outcomes Y, as a function of a. More information can be accessed with
?plot and more plotting options with 7par.

> # Hint: this code would plot x2 as a function of x and add a title
> plot(x, x2, main='Plot of x2 by x')

6. Based on your knowledge of the data generating system as well as the graph, do you think
a working MSM with a linear form is a good summary?

Solution:

# 1. making the data frame

n=5

# generating the exogenous Us
U.A <- runif(n, min=0, max=2)
U.Y <- rnorm(n, mean=0, sd=0.3)
Evaluating the counterfactuals
0<- 4 +9*%0-2.25%0*0+ U.Y

1<- 4 +9%1-2.25%1*1+ U.Y

2<- 4 +9%2-2.25%2*%2+ U.Y

3<- 4 +9%3-2.25*x3*3+ U.Y

4<- 4 +9%4-2.25*%4%4+ U.Y

VVVVVVVVYVVY
SN S SsSw

LNC S SN

2. making the dataframe
c() combines values into a vector.
.a<- c¢(Y.0, Y.1, Y.2, Y.3, Y.4)

®H R < K R

To get a vector of the corresponding treatments use the rep() function
a<- c¢( rep(0,n), rep(1, n), rep(2, n), rep(3, n), rep(4, n) )
#

X<- data.frame(a,Y.a)
head (X)

VVVVVVVVYVYV

Y.a
4.244533
3.930170
4.502727
3.775410
4.077615

10.994533

O O WN -
O O O O O

> summary (X)

Min. :0 Min. : 3.775
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1st Qu.:1 1st Qu.: 4.245

Median :2  Median :10.680

Mean :2  Mean : 8.606

3rd Qu.:3 3rd Qu.:11.253

Max. :4  Max. :13.503

> # 3. Plotting the counterfactuals

>

> # plot the counterfactual happiness as a function of cups of butterbeer consumed
> # adding a title and label axes

> plot(a, Y.a, main='Counterfactual happiness as a function of cups of butterbeer’,
+ xlab='Cups of butterbeer a', ylab='Counterfactual happiness Y.a')

Counterfactual happiness as a function of cups of butterbeer
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Solution Fig. 2: Plot the counterfactual outcomes Y, as a function of a.

4 Based on our knowledge of the data generating system as well as the previous graph, the working
MSM is a poor summary of how counterfactual happiness changes with cups of butterbeer consumed.
The true functional relationship is quadratic.

3.2 Obtain the value of the target causal parameter

1. We have the counterfactuals Y, for a € A = {0, 1,2, 3,4} and have defined the target parameter
using the least squares projection (i.e. with the L2 loss function). Use glm() function to fit
the coefficients of the m(a|3). Interpret the results.

2. Add the projected causal curve to the graph. See abline().

3. Bonus: Add the true causal curve to the graph. Use the seq() function to generate lots
of doses between A = 0 and A = 4. Then evaluate the mean counterfactual Ey x(Y,) =
4+ 9a — 2.25a° at these points. Finally, use the lines() function to add the line.

Solution:
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> HERHHAHBRAHHH

> # 1. Evaluate the value of the target causal parameter.

> # We can use ordinary least squares regression to obtain betas.

> workMSM<- glm(Y.a ~ a)

> #

> # the target parameter are the coefficient value that minimize the L2 risk function
> workMSM

Call: glm(formula = Y.a ~ a)

Coefficients:
(Intercept) a
8.606e+00 -3.140e-16

Degrees of Freedom: 24 Total (i.e. Null); 23 Residual
Null Deviance: 356
Residual Deviance: 356 AIC: 143.3

Projecting the causal dose-response curve onto the working MSM yields coefficients of 5y = 8.508 and
£1 = 0. In words, summarizing the true causal dose-response curve with a linear working MSM suggests
that butterbeer consumption has no linear effect on mean counterfactual happiness.

Note: If instead we believed the MSM was true (i.e. the dose-response curve actually has a linear form),
then a coefficient of 81 = 0 would incorrectly suggest that butterbeer consumption has no effect on mean
counterfactual happiness. The MSM would suggest that the expected counterfactual happiness is 8.508
units, regardless of number of cups of butterbeer consumed.

RAHAHRAHHHHHRRAS

#2. Add the projected causal curve to the graph.

plot(a, Y.a, main='Counterfactual happiness as a function of cups of butterbeer',
xlab='Cups of butterbeer A', ylab='Counterfactual happiness Y.a')

abline (workMSM, col='red', 1lwd=2)

# we are specifying red for the color and increasing the line width (lwd)

HAHAHHHHHHRRRY

#3. Add the true causal curve to the graph.

# using the seq() function, we can get a lot of points between A=0 and A=4
A.cont<- seq(from=0, to=4, by=0.1)

# then we can evaluate the mean counterfactual at all these points
Y.a.cont<- 4 +9*A.cont-2.25%A.cont*A.cont

lines(A.cont, Y.a.cont, col='green', lwd=2)

# we are specifying green for the color and increasing the line width (1lwd)

# we can add a legend
legend('topright', c('Working MSM', 'True'), col=c('red', 'green'), lwd=2)

VVVVVVVVVVVVVYV +VVYV
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Counterfactual happiness as a function of cups of butterbeer
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Solution Fig. 3: Plot the counterfactual outcomes Y, as a function of a. The true causal curve is shown in
green, while its projection onto the working MSM is shown in red.




